Fundamental research and continued miniaturization of materials, components and systems have raised the need for the development of thermal-investigation methods enabling ultra-local measurements of surface temperature and thermophysical properties in many areas of science and applicative fields. Scanning thermal microscopy (SThM) is a promising technique for nanometer-scale thermal measurements, imaging, and study of thermal transport phenomena. This review focuses on fundamentals and applications of SThM methods. It inventories the main scanning probe microscopy-based techniques developed for thermal imaging with nanoscale spatial resolution. It describes the approaches currently used to calibrate the SThM probes in thermometry and for thermal conductivity measurement. In many cases, the link between the nominal measured signal and the investigated parameter is not straightforward due to the complexity of the micro/nanoscale interaction between the probe and the sample. Special attention is given to this interaction that conditions the tip-sample interface temperature. Examples of applications of SThM are presented, which include the characterization of operating devices, the measurements of the effective thermal conductivity of nanomaterials and local phase transition temperatures. Finally, future challenges and opportunities for SThM are discussed.
Perfectly crystalline solids are excellent heat conductors. Prominent counterexamples are intermetallic clathrates, guest-host systems with a high potential for thermoelectric applications due to their ultralow thermal conductivities. Our combined experimental and theoretical investigation of the lattice dynamics of a particularly simple binary representative, Ba(8)Si(46), identifies the mechanism responsible for the reduction of lattice thermal conductivity intrinsic to the perfect crystal structure. Above a critical wave vector, the purely harmonic guest-host interaction leads to a drastic transfer of spectral weight to the guest atoms, corresponding to a localization of the propagative phonons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.