Animal nutrition considerably affects milk composition that influences its nutritional quality. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, we examined the effect of food deprivation (FD) on the expression of 8379 genes in caprine mammary gland using a bovine oligonucleotide microarray. Twelve lactating goats were assigned to 2 groups based on their feeding level (control diet ad libitum vs. 48-h FD). We identified 161 genes whose expression was altered by FD. Most of these genes (88%) were downregulated, suggesting a stress response by the mammary gland. In particular, the decrease in expression of genes involved in milk protein, lactose, and lipid metabolism could contribute together with the shortage of nutrients to the drop in milk protein, lactose, and fat secretion. In addition, this study highlights modification of the expression of at least 14 genes that could be responsible for a slowdown in mammary cell proliferation and differentiation and/or an increase in programmed cell death in response to 48-h FD in goats.
This study aimed to ascertain the response of goat mammary metabolic pathways to concentrate and lipid feeding in relation to milk fatty acid (FA) composition and secretion. Sixteen midlactation multiparous goats received diets differing in forage-to-concentrate ratio [high forage (HF) 64:36, and low forage (LF) 43:57] supplemented or not with lipids [HF with 130 g/d of oil from whole intact rapeseeds (RS) and LF with 130 g/d of sunflower oil (SO)] in a 4 x 4 Latin square design. Milk yield, milk composition, FA profile, and FA secretion were measured, as well as the expression profiles of key genes in mammary metabolism and of 8,382 genes, using a bovine oligonucleotide microarray. After 3 wk of treatment, milk, lactose, and protein yields were lower with HF-RS than with the other diets, whereas treatment had no effect on milk protein content. Milk fat content was higher with the HF-RS and LF-SO diets than with the HF and LF diets, and SO supplementation increased milk fat yield compared with the LF diet. Decreasing the forage-to-concentrate ratio from 64:36 to 43:57 had a limited effect on goat milk FA concentrations and secretions. Supplementing the LF diet with SO changed almost all the FA concentrations, including decreases in medium-chain saturated FA and large increases in trans C18:1 and C18:2 isomers (particularly trans-11 C18:1 and cis-9, trans-11 conjugated linoleic acid), without significant changes in C18:0 and cis-9 C18:1, whereas supplementing the HF diet with RS led to a strong decrease in short- and medium-chain saturated FA and a very strong increase in C18:0 and cis-9 C18:1, without significant changes in trans C18:1 and conjugated linoleic acid. Despite the decreases in milk lactose and protein yields observed with HF-RS, and despite the decrease in milk medium-chain FA and the increase in C18 FA secretion with RS or SO supplementation, none of the dietary treatments had any effect on mammary mRNA expression of the key genes involved in lactose (e.g., alpha-lactalbumin), protein (e.g., beta-casein), and lipid metabolism (e.g., lipoprotein lipase) after 3 wk of treatment. In addition, transcriptome analysis did not provide evidence of treatments inducing significant changes in the expression of specific genes in the mammary gland. However, 2-way hierarchical clustering analysis highlighted different global mammary expression profiles between diets, showing that the gene expression profiles corresponding to the same diet were gathered by common groups of genes. This experiment suggests that after 3 wk of dietary treatment, other factors, such as substrate availability for mammary metabolism, could play an important role in contributing to milk FA responses to changes in diet composition in the goat.
IntroductionAnaplastic large cell lymphoma (ALCL) is a T/null-cell neoplasm characterized by the expression of a hybrid protein comprising an N-terminal partner protein fused to the cytoplasmic portion of the anaplastic lymphoma kinase (ALK) tyrosine kinase. The fulllength ALK protein belongs to the family of receptor tyrosine kinases and is highly conserved across species. 1 In approximately 80% of ALK-positive lymphomas, the hybrid kinase is the NPM-ALK fusion protein that is encoded by the nucleophosmin (NPM)-ALK fusion gene resulting from the (2;5)(p23;q35) chromosomal translocation. [2][3][4] Other translocations have been described involving the ALK gene and other partners, including TFG, 5 CLTC, 6 ATIC, 6,7 and TPM3. 8 In NPM-ALK, as well as in variant fusion proteins, the N-terminal partner protein is widely expressed in normal cells due to ubiquitous transcription of the corresponding promoter. Thus, cells that do not normally express the full-length ALK receptor because of its restricted tissue distribution 4,9 display, if they contain an X-ALK translocation, anomalous transcription of the ALK chimeric mRNA and aberrant expression of the encoded fusion protein. In addition, the N-terminal partner protein (NPM or other variants) contains an oligomerization motif that enables the fusion protein to form homodimers as well as heterodimers with the full-length partner (Bischof et al 10 and review in Pulford et al 1 ). Oligomerization of the fusion protein results in the constitutive activation of the ALK tyrosine kinase catalytic domain contained in its carboxy-terminal part. This, in turn, leads to abnormal activation of multiple downstream signaling cascades that are responsible for the neoplastic transformation of cells, involving, among others, phospholipase C-gamma (PLC␥), 11 phosphoinositide 3-kinase (PI3K), 12 13,15 as well as Src kinases. 16 Several model systems have been established to study the oncogenic mechanisms used by ALK fusion proteins, including transgenic mice, which develop lymphoma when NPM-ALK expression is directed to lymphocytes, 17,18 and cultured cells which acquire transformed properties when they express ALK fusion . A recent analysis of NPM-ALK-associated proteins in the t(2;5)-positive line Karpas 299 led to the identification of a number of proteins and highlighted the complexity of the molecular mechanisms underlying NPM-ALK oncogenicity. 20 In this study, we characterized AUF1/hnRNPD as a new partner of NPM-ALK. AUF1 belongs to the family of AU-binding proteins (AU-BPs) that regulate the cellular half-lives of many mRNAs by directly interacting with an AU-rich element (ARE) located in their 3Ј untranslated region. [21][22][23] Although AREs are found in mRNAs coding for a wide range of proteins, 24 many ARE-containing mRNAs are transcribed from early response genes (ERGs) encoding proto-oncogene products (such as c-Myc), cytokines, cyclins (such as cyclins D1, A2, and B1) and growth factors involved in the control of cell growth and proliferation. Here, we demonstrate that...
Mycobacterium avium subsp. paratuberculosis (MAP) is the pathogen responsible for paratuberculosis or Johne’s Disease (JD) in ruminants, which is responsible for substantial economic losses worldwide. MAP transmission primarily occurs through the fecal-oral route, and the introduction of an MAP infected animal into a herd is an important transmission route. In the current study, we characterized MAP isolates from 67 cows identified in 20 herds from the provinces of Quebec and Ontario, Canada. Whole genome sequencing (WGS) was performed and an average genome coverage (relative to K-10) of ∼14.9 fold was achieved. The total number of SNPs present in each isolate varied from 51 to 132 and differed significantly between herds. Isolates with the highest genetic variability were generally present in herds from Quebec. The isolates were broadly separated into two main clades and this distinction was not influenced by the province from which they originated. Analysis of 8 MIRU-VNTR loci and 11 SSR loci was performed on the 67 isolates from the 20 dairy herds and publicly available references, notably major genetic lineages and six isolates from the province of Newfoundland and Labrador. All 67 field isolates were phylogenetically classified as Type II (C-type) and according to MIRU-VNTR, the predominant type was INMV 2 (76.1%) among four distinct patterns. Multilocus SSR typing identified 49 distinct INMV SSR patterns. The discriminatory index of the multilocus SSR typing was 0.9846, which was much higher than MIRU-VNTR typing (0.3740). Although multilocus SSR analysis provides good discriminatory power, the resolution was not informative enough to determine inter-herd transmission. In select cases, SNP-based analysis was the only approach able to document disease transmission between herds, further validated by animal movement data. The presence of SNPs in several virulence genes, notably for PE, PPE, mce and mmpL, is expected to explain differential antigenic or pathogenetic host responses. SNP-based studies will provide insight into how MAP genetic variation may impact host-pathogen interactions. Our study highlights the informative power of WGS which is now recommended for epidemiological studies and to document mixed genotypes infections.
Goat's a S1 -casein (CSN1S1) polymorphism has a significant effect on milk protein and lipid composition, which affects the nutritional quality and technological properties of milk. Moreover, this polymorphism has a large impact on the morphology of mammary epithelial cells. To explore the metabolic pathways modulated in relation to this polymorphism, we compared the mammary gene expression profiles of two groups of lactating goats carrying either two reference or two defective alleles, using a bovine oligonucleotide microarray representing 8379 genes. We identified 41 differentially expressed genes between the two genotype groups. In particular, we showed a downregulation of two key lipogenic genes encoding fatty acid synthase and glycerol-3-phosphate acyltransferase in agreement with the low fat concentration associated with CSN1S1 deficiency. In addition, this study highlights changes in the expression level of several genes known to influence membrane fluidity, cell-cell interaction or chromatin organization. Our results open up new fields of investigation on structural modifications associated with CSN1S1 deficiency that could affect mammary gland function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.