Familial idiopathic nephrotic syndromes represent a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. A causative gene for this disease, NPHS2, was mapped to 1q25-31 and we report here its identification by positional cloning. NPHS2 is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. We found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.
We recently cloned a novel gene, NPHS2, involved in autosomal recessive steroid-resistant nephrotic syndrome. This gene encodes a novel podocyte protein, podocin. Given its similarity with the stomatin family proteins, podocin is predicted to be an integral membrane protein with a single membrane domain forming a hairpin-like structure placing both N- and C-termini in the cytosol. Here, we show by in situ hybridization, that during development, the NPHS2 transcript is first expressed in mesonephric podocytes from the S-shaped body and, later, in the metanephric kidney, in the future podocytes at the late S-shaped body stage. In the mature kidney, NPHS2 is exclusively expressed in the podocytes of mature glomeruli. We generated rabbit polyclonal antibodies against fusion proteins derived from the N- and the C-terminal regions of podocin which detected a single band of 49-kd in transfected HEK293 cell lysates by immunoprecipitation and Western blotting. By immunohistology, podocin was detected in podocytes from the early capillary loop stage in the developing nephrons, and at the basal pole, along the GBM, in mature glomeruli. By electron microscopy, we demonstrate that podocin is facing the slit diaphragm with its two ends in the cytoplasm of the foot processes, in agreement with its predicted structure. Our results suggest that podocin could serve to anchor directly or indirectly components of the slit diaphragm to the cytoskeleton.
Podocytes are specialized epithelial cells covering the basement membrane of the glomerulus in the kidney. The molecular mechanisms underlying the role of podocytes in glomerular filtration are still largely unknown. We generated podocin-deficient (Nphs2 ؊/؊ ) mice to investigate the function of podocin, a protein expressed at the insertion of the slit diaphragm in podocytes and defective in a subset of patients with steroid-resistant nephrotic syndrome and focal and segmental glomerulosclerosis. Nphs2 ؊/؊ mice developed proteinuria during the antenatal period and died a few days after birth from renal failure caused by massive mesangial sclerosis. Electron microscopy revealed the extensive fusion of podocyte foot processes and the lack of a slit diaphragm in the remaining foot process junctions. Using real-time PCR and immunolabeling, we showed that the expression of other slit diaphragm components was modified in Nphs2 ؊/؊ kidneys: the expression of the nephrin gene was downregulated, whereas that of the ZO1 and CD2AP genes appeared to be upregulated. Interestingly, the progression of the renal disease, as well as the presence or absence of renal vascular lesions, depends on the genetic background. Our data demonstrate the crucial role of podocin in the establishment of the glomerular filtration barrier and provide a suitable model for mapping and identifying modifier genes involved in glomerular diseases caused by podocyte injuries.Glomeruli are specialized structures responsible for blood filtration in the kidney and are targets of injury in a number of human diseases. Plasma ultrafiltration occurs through the glomerular filtration barrier, which is composed of highly specialized visceral epithelial cells called podocytes, a fenestrated capillary endothelium, and an intervening glomerular basement membrane (GBM) (28). Podocytes are octopus-like cells (18), comprising a cell body and cytoplasmic extensions called major processes, which divide into actin-rich foot processes interdigitating over each capillary loop and counteracting the distensive forces. Each foot process is attached to its neighbor along its length by an intercellular adherens-type junction (46), the slit diaphragm (SD), which is located just above the GBM. The recent discovery of several novel podocyte proteins and the description of their physical and functional interactions highlighted the critical role of the SD complex and of the actin cytoskeleton in the maintenance of the glomerular filtration barrier (34, 39; reviewed in references 31 and 41).Glomerular diseases are associated with leakage of proteins across the filter into the urine and with disappearance (effacement) of podocyte foot processes. Whether effacement of foot processes is the cause or consequence of the glomerular filter alterations is uncertain. However, in renal diseases progressing toward focal and segmental glomerulosclerosis (FSGS), podocytes are now thought to be the primary targets, responsible for the development of the lesion. FSGS is characterized by segmental ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.