We consider a joint information extraction (IE) model, solving named entity recognition, coreference resolution and relation extraction jointly over the whole document. In particular, we study how to inject information from a knowledge base (KB) in such IE model, based on unsupervised entity linking. The used KB entity representations are learned from either (i) hyperlinked text documents (Wikipedia), or (ii) a knowledge graph (Wikidata), and appear complementary in raising IE performance. Representations of corresponding entity linking (EL) candidates are added to text span representations of the input document, and we experiment with (i) taking a weighted average of the EL candidate representations based on their prior (in Wikipedia), and (ii) using an attention scheme over the EL candidate list. Results demonstrate an increase of up to 5% F1-score for the evaluated IE tasks on two datasets. Despite a strong performance of the prior-based model, our quantitative and qualitative analysis reveals the advantage of using the attention-based approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.