O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. 2018 Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
This article studies changes observed on the R-phase thermoelastic behavior in a near-equiatomic Ti-Ni shape memory alloy. Three kinds of procedures have been performed: different treatments, thermomechanical cycling under constant loading in shape memory helical springs and thermal cycling in as-treated and trained samples. Several heat treatments were carried out to investigate evolution of the R-phase by differential scanning calorimetry (DSC). A heat treatment was chosen on which R-phase is absent. Shape memory springs were produced and submitted to a training process in an apparatus by tensioning the springs under constant loading. Thermal cycling in DSC was realized in as-treated and trained samples. Several aspects of one-step (B2→B19') and two-steps (B2→R→B19') martensitic transformations and R-phase formation and their evolution during tests were observed and discussed.
Environmental and economic concerns accelerated biofuels research and industrial production. Many countries have been using diesel and biodiesel blends as fuels justifying research on biofilms formation and metals corrosion. Cylinders made of AISI-1020 carbon steel with an exposed area of 1587 mm2, water, and water associated with B3 fuel (diesel/biodiesel blend at 97 : 3 v/v) were used.The formation of biofilms was detected, and biocorrosion was detected on AISI-1020. The results showed a variation in sessile microflora during the experiments. In the biofilms, a significant concentration of aerobic, anaerobic, IOB,Pseudomonas aeruginosa, and sulfate-reducing bacteria was observed. The corrosion rates varied between0.45±0.01and0.12±0.01 mm/year, depending on the experimental conditions. The main corrosion products identified were various forms of FeOOH, magnetite, and all forms of FexSy. In systems where there were high levels of sulfate reducing bacteria, corrosion pits were observed. In addition, the aliphatic hydrocarbons present in the fluid containing 10% B3 were totally degraded.
This paper present a thermomechanical study of actuators in form of helical springs made from shape memory alloy wires that can work as actuator and/or as sensor. These abilities are due to the martensitic transformation. This transformation is a diffusionless phase transition that occurs by a cooperative atomic rearrange mechanism. In this work, helical spring actuators were manufactured from Cu-Zn-Al shape memory alloy wires. The springs were submitted to constant tensile loads and thermal cycles. This procedure allows to determine thermoelastic properties of the shape memory springs. Thermomechanical properties were analyzed during 50 thermal cycles in the temperature range from 20 to 130 °C. Results of variations in critical transformation temperatures, thermoelastic strain and thermal hysteresis are discussed based on defects rearrangement and martensitic transformation theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.