ÖzetBu çalışmanın amacı, ilköğretim 8. sınıf matematik dersinde disiplinler arası yaklaşım uygulamasının öğrencilerin matematik başarısı üzerindeki etkisini belirlemektir. Kontrol gruplu ön test-son test deneysel desen kullanılan çalışma grubu İstanbul'da bir ilköğretim okulunda 8. sınıfa devam eden 66 katılımcıdan oluşmak-tadır. Veri toplamak amacıyla araştırmacılar tarafından geliştirilen matematik başarı testi kullanılmıştır. Disiplinler arası yaklaşım ilkelerine göre geliştirilen ders planları beş hafta boyunca uygulanmış ve uygulama sonucu elde edilen veriler SPSS paket programı kullanılarak kovaryans analizi ile yorumlanmıştır. Araştırma bulguları, disiplinler arası yaklaşımın matematik başarısını olumlu yönde etkilediğini göster-miştir.Anahtar Kelimeler: Disiplinler arası yaklaşım; Matematik öğretimi; Matematik başarısı.
We test a standard DSGE (Dynamic Stochastic General Equilibrium) model on impulse responses of hours worked and real GDP after technology and non-technology shocks in emerging market economies (EMEs). Most dynamic macroeconomic models assume that hours worked are stationary. However, in the data, we observe apparent changes in hours worked from 1970 to 2013 in these economies. Motivated by this fact, we first estimate a structural vector autoregression (SVAR) model with a specification of hours in difference (DSVAR) and then set up a DSGE model by incorporating permanent labour supply (LS) shocks that can generate a unit root in hours worked, while preserving the property of a balanced growth path. These LS shocks could be associated with very dramatic changes in LS which look permanent in these economies. Hence, the identification restriction in our models comes from the fact that both technology and LS shocks have a permanent effect on GDP yet only the latter shocks have a long-run impact on hours worked. For inference purposes, we compare empirical impulse responses based on the EMEs data to impulse responses from DSVARs run on the simulated data from the model. The results show that a DSGE model with permanent LS shocks that can generate a unit root in hours worked is required to properly evaluate the DSVAR in EMEs as this model is able to replicate indirectly impulse responses obtained from a DSVAR on the actual data. JEL Classification: C32, E32
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.