A DFT study is carried out in order to elucidate the racemization and cyclization mechanism as well as the atroposelectivity during the synthesis of 2-thiohydantoins. Computational data shows that the racemization occurs after cyclization with the assistance of triethyl amine.
Stable, nonracemic axially chiral hemiaminals (O,N-hemiacetals) have been synthesized stereoselectively from lithium aluminum hydride (LiAlH 4) reductions of nonracemic 5-methyl-and 5-isopropyl-3-(o-aryl)-2-thioydantoins in tetrahydrofuran (THF) at room temperature in 10 min. Predominantly S-configured hemiaminals at C-4 of the heterocyclic ring were produced from the S-configured thiohydantoins at C-5 (by 80% when the C5 substituent is methyl and by 97% when it is isopropyl). The configuration at C-5 was retained during the reduction reaction. The stereochemical outcome of the axially chiral hemiaminals resulted from their conformational preferences.
Two novel axially chiral ortho-trifluoromethylphenyl thiohydantoin derivatives have been prepared atroposelectively from the reaction of R and S alanine methyl ester HCl salts with ortho-trifluoromethylphenyl isothiocyanate in the presence of triethyl amine. It was found that after purification of the crude product by simple recrystallization, the R amino acid esters yielded thiohydantoins having solely M axial chirality whereas the S ones returned the P isomers only. This result prompted us to perform sterically controlled aldol reactions on M and P thiohydantoin atropisomers. It was found that during the aldol reaction of 3-o-trifluoromethyl-5methylthiohydantoins, the o-trifluoromethyl group of the M isomers efficiently shielded the Si face of the intermediate and in this way, enabled the selective formation of only the R configured aldol products at C5 of the heterocyclic ring. The P thiohydantoins, on the other hand, yielded only the S C5 configured aldol products as a result of the Re face shielding of the orthotrifluoromethyl group of intermediate enolates. A noteworthy face selectivity of the benzaldehyde molecule was not observed (anti/ syn only 3/2) during the aldolization of trifluoromethylphenyl derivatives of thiohydantoins. Aldol reactions were also done using the previously synthesized axially chiral thiohydantoins with ortho-Cl, Br, and I phenyl substituents which had predominantly P conformations (P/M ratios > 95%), and the stereochemical outcomes were compared with those of the ortho-trifluoromethyl substituted ones. 80−90% face selectivity of the benzaldehyde molecule was observed for the axially chiral o-halophenyl substituted thiohydantoins. The syntheses done with axially chiral 3-ortho-trifluoromethylphenyl-and 3-ortho-iodophenyl-5-methyl thiohydantoins enabled stereoselective formation of quaternized chiral carbon centers at C5 of the thiohydantoin ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.