Background and aimEffects of atrial fibrillation (AF) and its ablative treatment on LV torsion have not yet been fully investigated. This study aimed to examine whether AF patterns of LV contraction and its ablative correction can exert a significant impact on LV torsion by velocity vector imaging (VVI).MethodsThis case-control study conducted in Rajaie Cardiovascular, Medical and Research Center between October 2012 and June 2013. Study participants were 30 consecutive patients with symptomatic paroxysmal AF who met the inclusion criteria. The control group included 24 healthy participants with no history of cardiovascular disease. All individuals were in sinus rhythm at the time of echocardiography before and after the ablation procedure. Two-dimensional (2D) and Doppler echocardiography on a commercially available ultrasound system was performed for all the patients. Scanning was done by a wide-band ultrasound transducer with the frequency range between 2.5–3.5 MHz. The two short-axis views at basal and apical levels were subsequently processed off-line by VVI XStrain software. In order for data analysis, SPSS 16 utilized using paired and independent t-test. p-value ≤0.05 was considered significant.ResultsLV torsion (°/cm) mean ± SD was significantly lower in paroxysmal AF patients before ablation (0.8±0.3) than the control group (1.5±0.4) (p<0.001) and increased significantly after ablation (1.1±0.5) compared with before ablation (p=0.004), but still significantly lower than the control group (p=0.003). LV Twist, twist rate and untwist rate mean ± SD were significantly lower in paroxysmal AF patients before ablation than the control group and increased significantly after ablation compared with before ablation, but still significantly lower than the control group.ConclusionSubclinical LV dysfunction may be detected in paroxysmal AF rhythm by measuring torsional parameters through VVI which improves after AF ablation.
Background:Atrial fibrillation (AF) is the most common clinically significant cardiac arrhythmia. However, diagnosis of intraventricular dyssynchrony in patients with AF is difficult due to beat-to-beat variation. Additionally, evaluation of mechanical dyssynchrony in the traditional method is based on average of 5 to 10 beats, which is exhausting and time consuming. Single-beat evaluation of a beat with equal subsequent cardiac cycles has been proposed as an accurate method in patients with AF.Objectives:We proposed to evaluate intraventricular mechanical dyssynchrony by measuring time-to-peak systolic velocity between basolateral and basoseptal segments (septum to lateral wall delay) using Tissue Doppler Study (TDI) by two different methods.Materials and Methods:31 patient (68 ± 10.3 years) with heart failure (EF < 35%) and AF rhythm, R-R cycle length more than 500 msec were evaluated. We found a target beat in which preceding R-R (R-R1) to pre-preceding R-R (R-R2) ratio was 1(RR1/RR2 = 1) then measured the intraventricular dyssynchrony in that cycle. Intraventricular dyssynchrony was also determined and averaged for 8 consecutive cardiac cycles. The values at RR1/RR2 = 1 were compared with the average of intraventricular dyssynchrony in eight cycles and the relationship between dyssynchrony were evaluated by paired T-test, linear Pearson correlation (r2), linear regression analysis.Results:The average of dyssynchrony in eight cycles showed a positive correlation with dyssynchrony in target beat RR1/RR2 = 1. Average of dyssynchrony in target beat was 46.77 msec, and average of 8 cycle was = 47.701, (P value = 0.776, Pearson linear correlation 0.769).Conclusions:Measurement of intraventricular dyssynchromy in basoseptal and basolateral segments in AF and heart failure patients in a single beat with RR1/RR2 = 1 , were very similar to the average value of eight cardiac cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.