The synthesis and spectroscopic characterization of an innovative ball-type cobalt metallophthalocyanine 4, bridged by four 1,2-bis(2-hydroxymethyl)-O-carborane (HMOC) 1 units, has been achieved. The synthesized compound 4 was characterized structurally and electronically using elemental analysis, UV-Vis absorption spectroscopy, FT-IR spectroscopy, MALDI-TOF mass spectrometry, EPR spectroscopy and magnetic susceptibility. The photovoltaic performance of the newly synthesized compound in dye-sensitized solar cells was investigated. In order to clarify the effect of dye-sensitization time on photovoltaic performance parameters, the sensitization time was varied from 12 to 60 h and the performance parameters were investigated. It was found that sensitization time had a strong effect on the main performance parameters. The best photovoltaic performance was achieved after sensitization for 36 h (short circuit current density, 5.41 mA cm−2; overall conversion efficiency, 3.42%). Computational UV-Vis absorption spectra of the molecule was calculated using time dependent density functional theory and was found consistent with measured UV-Vis spectra.
Use and application of Schiff bases are extended to many different fields of technology. (ISE)M(CO) complex [M = Cr (1), Mo (2), W (3), and where ISE is 3[4-ethyl(phenly)imino][indoline-2-one]; and (ISB)M(CO) [M = Cr (4), Mo (5), W (6)], where ISB is 3[4-butly(phenly)imino][indoline-2-one] were investigated by computational methods. Computations were carried out using density functional theory (DFT) with B3LYP and CAM-B3LYP functionals, in conjunction with LanL2DZ basis set for metals and cc-PVTZ basis set for other atoms. Time-dependent density functional theory (TDDFT) was used at the same level to obtain the electronic transitions. Molecular orbital energies, UV-Vis spectra, and total electron densities of investigated molecules were shown in the gas phase and in THF. Metal complexes showed higher absorption coefficients compared to ISE and ISB in the visible region. Additionally, they displayed absorption peaks at longer wavelengths and full MLCT character in solution, and W complexes required less energy compared to the complexes of other investigated metal ions. Among the investigated systems, (ISE)W(CO) and (ISB)W(CO) complexes with lowest HOMO-LUMO gaps are found to be the best candidates for photosensitive material production. Graphical Abstract UV-Vis absorption spectra of ISE and (ISE)W(CO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.