Purpose The purpose of this paper is to enhance the limited fluorescence of mica titania (MT) effect pigments by coating them with peripherally substituted zinc phthalocyanines (ZnPc). Design/methodology/approach The effects of deposition medium, temperature, time, initial organic pigment/MT ratio on deposition behaviour and efficiencies were investigated separately for ZnPc, nitro (TNZnPc) and amino (TAZnPc) substituted ZnPc’s. Findings TNZnPc could be deposited in the form of well-defined crystals on MT with per cent 64 ± 5 efficiency in chloroform at 50°C within 5 h and the amount deposited was linearly dependent on the initial TNZnPc concentration. TNZnPc fluorescence emissions, which appear mainly at 460 and 685 nm in pure pigments, could be observed in combination with MT (MT-TNZnPc) as well. A spectral analysis on the non-overlapping region of the spectrum with two different excitations (385 and 630 nm) revealed that, respectively, up to threefold to sixfold increase is possible to attain, depending on the excitation wavelengths. Research limitations/implications Efficiency of deposition could not be taken above per cent 11 ± 4 with TAZnPc. Although ZnPc could be deposited with per cent 57 ± 3 efficiency, the pigment was not effective in imposing its fluorescence characteristics over MT. Originality/value Combining inorganic effect pigments with organic dye molecules is an idea that has been elaborated mainly for producing different colour effects and stabilization of dye molecules against agglomeration. Here, for the first time, it is used to enhance the fluorescence of the effect pigments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.