The linear and nonlinear optical (NLO) properties of the paraelectric and ferroelectric (FE) phases of lithium tantalate crystals were calculated using a first-principles approach based on density functional theory with the generalized gradient approximation. We present our results for the structural parameters, the imaginary and real parts of the frequency-dependent linear optical response, optical functions such as the spectral reflectivity, the absorption coefficient and the electron energy-loss spectrum. A simple scissors operator is applied to adjust the energy gap from calculations to match the experimental value. In the FE phase, we also study the NLO susceptibilities and calculate the NLO susceptibility tensor. LiTaO3 displays a good NLO effect. The results are compared with the theoretical calculations and available experimental data.
Cataloged from PDF version of article.The electronic structures of KNbO(3)were calculated within the density functional theory, and their evolution was analyzed as the crystal-field symmetry changes from cubic to rhombohedral via tetragonal phase. We carried out electron-energy loss spectroscopy experiments by using synchrotron radiation and compared the results with the theoretical spectra calculated within Density Functional Theory. The dominant role of the NbO(6)octahedra in the formation of the energy spectra of KNbO(3)compound was demonstrated. The anomalous behavior of plasmons in ferroelectrics was exhibited by the function representing the characteristic energy loss in the region of phase transition
In this work, we have investigated the electronic and optical properties of the technologically important rare earth oxide compounds-X2O3 (X: Gd, Tb) using the density functional theory within the GGA. The band structure of X2O3 have been calculated along high symmetry directions in the first brillouin zone. The real and imaginary parts of dilectric functions and the other optical responses such as energy-loss function, the effective number of valence electrons and the effective optical dielectric constants of the rare earth sesquioxides (Gd2O3 and Tb2O3) were calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.