Magnetorheological dampers have received a great deal of attention in the last two decades due to their being a potential technology to conduct semi-active control. It is therefore vitally important to understand the dynamic behavior of such devices whose nonlinear hysteresis is a rather complicated phenomenon. Hence, this paper aims at conducting a comparative evaluation of the currently available parametric models that have been widely used to develop control algorithms that take maximum advantage of the unique features of MR dampers. The comparisons showed that the simple algebraic parametric models exhibited considerably better predictions than the much more complicated ordinary differential parametric models.
This study focuses on experimental investigation of a fail-safe, bi-linear, liquid spring magnetorheological damper system for a three-dimensional earthquake isolation system. The device combines the controllable magnetorheological damping, fail-safe viscous damping, and liquid spring features in a single unit serving as the vertical component of a building isolation system. The bi-linear liquid spring feature provides two different stiffnesses in compression and rebound modes. The higher stiffness in the rebound mode prevents a possible overturning of the structure during rocking mode. For practical application, the device is to be stacked together along with the traditional elastomeric bearings that are currently used to absorb the horizontal ground excitations. An experimental setup is designed to reflect the real-life loading conditions. The 1/4th-scale device is exposed to combined dynamic axial loading (reflecting vertical seismic excitation) and constant shear force that are up to 245 and 28 kN, respectively. The results demonstrate that the device performs successfully under the combined axial and shear loadings and compare well with the theoretical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.