An increase in Rho kinase (ROCK) activity is implicated in chronic hypoxia-induced pulmonary hypertension. In the present study, we determined the role of ROCKs in cGMP-dependent protein kinase (PKG)-mediated pulmonary vasodilation of fetal lambs exposed to chronic hypoxia. Fourth generation pulmonary arteries were isolated from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days and from control ewes. In vessels constricted to endothelin-1, 8-bromoguanosine-cGMP (8-Br-cGMP) caused a smaller relaxation in chronically hypoxic (CH) vessels compared with controls. Rp-8-Br-PET-cGMPS, a PKG inhibitor, attenuated relaxation to 8-Br-cGMP in control vessels to a greater extent than in CH vessels. Y-27632, a ROCK inhibitor, significantly potentiated 8-Br-cGMP-induced relaxation of CH vessels and had only a minor effect in control vessels. The expression of PKG was increased but was not accompanied with an increase in the activity of the enzyme in CH vessels. The expression of type II ROCK and activity of ROCKs were increased in CH vessels. The phosphorylation of threonine (Thr)696 and Thr850 of the regulatory subunit MYPT1 of myosin light chain phosphatase was inhibited by 8-Br-cGMP to a lesser extent in CH vessels than in controls. The difference was eliminated by Y-27632. These results suggest that chronic hypoxia in utero attenuates PKG-mediated relaxation in pulmonary arteries, partly due to inhibition of PKG activity and partly due to enhanced ROCK activity. Increased ROCK activity may inhibit PKG action through increased phosphorylation of MYPT1 at Thr696 and Thr850.
We have used spin-label EPR spectroscopy to examine possible alterations in protein-protein interactions that accompany the activation of the cardiac sarcoplasmic reticulum (SR) Ca-ATPase following the phosphorylation of phospholamban (PLB). Using a radioactive derivative of a maleimide spin label (MSL), we have developed conditions for the selective spin-labeling of the Ca-ATPase in both native cardiac and skeletal sarcoplasmic reticulum membranes. The rotational dynamics of the cardiac and skeletal Ca-ATPase isoforms in native SR membranes were measured using saturation transfer EPR. We report that the phosphorylation of PLB in cardiac SR results in a (1.8 +/- 0.2)-fold reduction in the overall rotational mobility of the Ca-ATPase. The alteration in the rotational dynamics of the Ca-ATPase is the direct result of the phosphorylation of PLB, and is not related to the phosphorylation of the Ca-ATPase or any other SR proteins since no alteration in the ST-EPR spectrum is observed as a result of conditions that phosphorylate the cardiac Ca-ATPase with ATP. Neither do the use of conditions that activate the Ca-ATPase in cardiac SR result in the alteration of the rotational dynamics or catalytic properties of the Ca-ATPase in skeletal SR where PLB is not expressed. Measurements of the rotational dynamics of stearic acid spin labels (SASL) incorporated into cardiac SR membranes with a nitroxide at the 5- and 12-positions using conventional EPR indicate that there is virtually no difference in the lipid acyl chain dynamics in cardiac SR membranes upon the phosphorylation of PLB. These results indicate that the decrease in the rotational dynamics of the Ca-ATPase in cardiac SR membranes associated with the phosphorylation of PLB is related to enhanced interactions between individual Ca-ATPase polypeptide chains due to (i) an alteration in the spatial arrangement of cardiac Ca-ATPase polypeptide chains within a defined oligomeric state or (ii) increased protein-protein associations. We suggest that altered interactions between Ca-ATPase polypeptide chains and PLB serves to modulate the activation barrier associated with calcium activation of the Ca-ATPase in cardiac SR membranes.
Regulation of cGMP-dependent protein kinase-mediated vasodilation by hypoxia-induced reactive species in ovine fetal pulmonary veins. Am J Physiol Lung Cell Mol Physiol 293: L1012-L1020, 2007. First published July 6, 2007 doi:10.1152/ajplung.00061.2007.-We previously reported that hypoxia attenuates cGMP-dependent protein kinase (PKG)-mediated relaxation in pulmonary vessels (Am J Physiol Lung Cell Mol Physiol 279: L611-L618, 2003). To determine whether hypoxia-induced reactive oxygen and nitrogen species (ROS and RNS, respectively) may be involved in the downregulation of PKGmediated relaxation, ovine fetal intrapulmonary veins were exposed to 4 h of normoxia or hypoxia, with or without scavengers of ROS [N-acetylcysteine (NAC)] or peroxynitrite (quercetin and Trolox) and preconstricted with endothelin-1. Hypoxia decreased the relaxation response to 8-bromo-cGMP, PKG protein expression, and kinase activity and increased tyrosine nitration in PKG. However, ROS and RNS scavengers prevented these changes. To determine whether increased PKG nitration diminishes PKG activity, pulmonary vein smooth muscle cells (PVSMC) were exposed to shorter-term (30 min) hypoxia, which increased PKG nitration and decreased PKG activity but did not alter PKG protein expression. Increased dihydro-2,7-dichlorofluorescein diacetate (DCFH 2-DA) fluorescence in PVSMC after 4 h or 30 min of hypoxia was not observed in the presence of NAC, quercetin, or Trolox, suggesting increased ROS and RNS production. Increased PKG nitration and the associated decrease in PKG activity in PVSMC after 30 min of hypoxia were also reversed on reoxygenation. The consequences of PKG nitration were assessed by exposure of purified PKG-I␣ to peroxynitrite, which caused increased 3-nitrotyrosine immunoreactivity and inhibition of kinase activity. Our data suggest that, after 30 min of hypoxia, reversible covalent modification of PKG by hypoxia-induced reactive species may be an important mechanism by which the relaxation response to cGMP is regulated. However, after 4 h of hypoxia, PKG nitration and decreased PKG expression are involved. hypoxic vasoconstriction; vascular smooth muscle; protein kinase G GUANOSINE 3Ј,5Ј-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) is a serine/threonine kinase that plays an important role in the regulation of vascular smooth muscle (SMC) contractility (6,22,36). Activation of soluble guanylyl cyclase by nitric oxide (NO) leads to increased synthesis of the second messenger cGMP and stimulation of PKG (2, 27). PKG, in turn, mediates SMC relaxation by a number of mechanisms, including phosphorylation of myosin light chain phosphatase, lowering of intracellular free Ca 2ϩ levels, and desensitization of the contractile apparatus to Ca 2ϩ (6,22,36). Mammalian PKG exists in two major forms: PKG-I, a soluble enzyme consisting of ␣-and -isoforms derived from alternative splicing from one gene, and PKG-II, a myristoylated, membrane-associated form derived from a second gene (23,36,46). PKG-I␣ is the primary isoform involv...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.