Gluten protein composition determines the rheological characteristics of wheat dough and is influenced by variable alleles with distinct effects on processing properties. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we determined the high-molecular weight glutenin subunit (HMW-GS) composition of 665 wheat genotypes employed in breeding programs in South Korea. We identified 22 HMW-GS alleles, including 3 corresponding to the Glu-A1 locus, 14 to Glu-B1, and 5 to Glu-D1. The Glu-1 quality score, which is an important criterion for high-quality wheat development, was found to be 10 for 105/665 (15.79%) of the studied genotypes, and included the following combinations of HMW-GS:
The wheat gliadins are a complex group of flour proteins that can trigger celiac disease and serious food allergies. As a result, mutation breeding and biotechnology approaches are being used to develop new wheat lines with reduced immunogenic potential. Key to these efforts is the development of rapid, high-throughput methods that can be used as a first step in selecting lines with altered gliadin contents. In this paper, we optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and reversed-phase high-performance liquid chromatography (RP-HPLC) methods for the separation of gliadins from Triticum aestivum cv. Chinese Spring (CS). We evaluated the quality of the resulting profiles using the complete set of gliadin gene sequences recently obtained from this cultivar as well as a set of aneuploid lines in CS. The gliadins were resolved into 13 peaks by MALDI-TOF-MS. α- or γ-gliadins that contain abundant celiac disease epitopes and are likely targets for efforts to reduce the immunogenicity of flour were found in several peaks. However, other peaks contained multiple α- and γ-gliadins, including one peak with as many as 12 different gliadins. In comparison, separation of proteins by RP-HPLC yielded 28 gliadin peaks, including 13 peaks containing α-gliadins and eight peaks containing γ-gliadins. While the separation of α- and γ-gliadins gliadins achieved by RP-HPLC was better than that achieved by MALDI-TOF-MS, it was not possible to link peaks with individual protein sequences. Both MALDI-TOF-MS and RP-HPLC provided adequate separation of ω-gliadins. While MALDI-TOF-MS is faster and could prove useful in studies that target specific gliadins, RP-HPLC is an effective method that can be applied more broadly to detect changes in gliadin composition.
In allergic individuals, ingestion of wheat can lead to wheat-dependent exercise-induced anaphylaxis (WDEIA). Many studies have been conducted to find WDEIA allergen–deficient wheat, including by generating omega-5 gliadin antibodies. However, the reported antibodies have not been specific enough to detect omega-5 gliadins encoded on the 1B chromosome. In this study, we generated monoclonal antibodies against the major allergens causing WDEIA, omega-5 gliadins. Using these antibodies (mono-O5B-1C10), we assessed accumulation of omega-5 gliadins in wild-type and nullisomic-tetrasomic (NT) lines of the wheat (Triticum aestivum) varieties Chinese Spring (CS) by one- and two-dimensional gel electrophoresis, followed by Coomassie blue staining or immunoblotting with mono-O5B-1C10. We also tested mono-O5B-1C10 for major omega-5 gliadins in various wheat germplasms. Our results thus demonstrate the specificity of mono-O5B-1C10 for major omega-5 gliadins and potentially useful for identifying of omega-5 gliadin–deficient wheat varieties that should not cause WDEIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.