Cotton stalk, a lignocellulosic waste material, is composed of xylose that can be used as a raw material for production of xylitol, a high-value product. There is a growing interest in the use of lignocellulosic wastes for conversion into various chemicals because of their low cost and the fact that they are renewable and abundant. The objective of the study was to determine the effects of H(2)SO(4) concentration, temperature, and reaction time on the production of sugars (xylose, glucose, and arabinose) and on the reaction by-products (furfural and acetic acid). Response surface methodology was used to optimize the hydrolysis process in order to obtain high xylose yield and selectivity. The optimum reaction temperature, reaction time, and acid concentration were 140 °C, 15 min, and 6%, respectively. Under these conditions, xylose yield and selectivity were found to be 47.88% and 2.26 g g(-1), respectively.
Tea, one of the most widely consumed beverages in the world, is produced from the leaves of the plant Camellia sinensis L.. Tea has important physiological properties and potential health benefits due to the presence of compounds such as polyphenols, amino acids, vitamins, carbohydrates, caffeine, and purine alkaloids. Tea is produced in three types as green tea (unfermented), oolong tea (partially fermented), and black tea (fully fermented). Black tea is consumed worldwide, whereas green and oolong teas are consumed mainly in Asia and North Africa. The total tea production in the world consists of about 78% black tea, 20% green tea and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.