This study analyses (k,m)-type slant helices in compliance with the modified orthogonal frame in 3-dimensional Euclidean space ($\mathbb{E}^{3}$). Furthermore, we perform some characterisations of curves with modified orthogonal frames in $\mathbb{E}^{3}$.
In this paper, we get some characterizations of conformable curve in R^2. We investigate the conformable curve in R^2. We define the tangent vector of the curve using the conformable derivative and the arc parameter s. Then, we get the Frenet formulas with conformable frames. Moreover, we define the location vector of conformable curve according to Frenet frame in the plane R^2.
Finally, we obtain the differential equation characterizing location vector and curvature of conformable curve in the plane R^2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.