A fundamental structural component of extracellular matrix in all connective and interstitial tissue, collagen is the most abundant protein in the human body. To date, mammalian collagens sources represent the golden standard for multiple biomedical applications, while marine-derived collagens have largely been used in industry (food, pharmaceutical, and cosmetic), with little use in research and clinical applications. Herein we demonstrate the effective use Rhizostoma pulmo jellyfish collagen, a source of biocompatible, sustainable collagen for 2D and 3D cell culture, addressing the global drive for technological developments that result in the replacement of animals and their derived products in research. Jellyfish collagen harbors similar structural features mammalian collagen type I, despite differing slightly in amino acid content. Jellyfish collagen supports ovarian cancer (OvCa) cell line proliferation, cellular morphology and expression of epithelial to mesenchymal transition markers, supporting the use of R. pulmo as a non-mammalian collagen cell culture substrate. Furthermore, R. pulmo collagen is effective in 3D device fabrication such as sponges where it mimics tissue architecture complexity. OvCa cells migrated and differentiated within the R. pulmo collagen 3D scaffolds confirming its suitability for advanced cell culturing applications, providing an excellent alternative to mammalian collagen sources for the culture of human cells.
Asbestos is a fiber causing lung diseases such as asbestosis and mesothelioma. Although the process involving these diseases remains to be elucidated for developing drugs and treatments, direct consequences of fiber exposure in humans have been clearly demonstrated. These diseases are first characterized by histological heterogeneity and combine chronic inflammation with fibrosis and cellular alterations. As a consequence, asbestosis is usually diagnosed at advanced stages of the disease and treatments are usually inefficient to cure the patients. Here, we review the links established between asbestos fiber chemistry and morphology with the occurrence of associated lung diseases. Cytological and histological aspects of diseases are described with respect to current analytical capabilities, notably for microscopy techniques.
α-amylase is an established marker for diagnosis of pancreatic and salivary disease, and recent research has seen a substantial expansion of its use in therapeutic and diagnostic applications for infection, cancer and wound healing. The lack of bedside monitoring devices for α-amylase detection has hitherto restricted the clinical progress of such applications. We have developed a highly sensitive α-amylase immunosensor platform, produced via in situ electropolymerization of aniline onto a screen-printed graphene support (SPE). Covalently binding an α-amylase specific antibody to a polyaniline (PANI) layer and controlling device assembly using electrochemical impedance spectroscopy (EIS), we have achieved a highly linear response against α-amylase concentration. Each stage of the assembly was characterized using a suite of high-resolution topographical, chemical and mechanical techniques. Quantitative, highly sensitive detection was demonstrated using an artificially spiked human blood plasma samples. The device has a remarkably wide limit of quantification (0.025-1000IU/L) compared to α-amylase assays in current clinical use. With potential for simple scale up to volume manufacturing though standard semiconductor production techniques and subsequently clinical application, this biosensor will enable clinical benefit through early disease detection, and better informed administration of correct therapeutic dose of drugs used to treat α-amylase related diseases.
Fourier transform infrared (FTIR) imaging has been used as a molecular histopathology tool on brain tissue sections after intracranial implantation and development of glioma tumors. Healthy brain tissue (contralateral lobe) as well as solid and diffuse tumor tissues were compared for their collagen contents. IR spectra were extracted from IR images for determining the secondary structure of protein contents and compared to pure product spectra of collagens (types I, III, IV, V, and VI). Multivariate statistical analyses of variance and correspondence factorial analysis were performed to differentiate healthy and tumor brain tissues as well as their classification according to their secondary structure profiles. Secondary structure profiles revealed that no collagen was present in healthy tissues; they are also significantly different from solid and diffuse tumors (p < 0.05). Solid and diffuse tumors could be discriminated with respect to the secondary structure profile of fibrillar and non-fibrillar collagens, respectively. We can thus propose to develop FTIR imaging for histopathology examination of tumors on the basis of collagen contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.