High crystal quality, vertically aligned AlxGa1-xN nanowire based double heterojunction light emitting diodes (LEDs) are grown on Si substrate by molecular beam epitaxy. Such AlxGa1-xN nanowires exhibit unique core-shell structures, which can significantly suppress surface nonradiative recombination. We successfully demonstrate highly efficient AlxGa1-xN nanowire array based LEDs operating at ∼340 nm. Such nanowire devices exhibit superior electrical and optical performance, including an internal quantum efficiency of ∼59% at room temperature, a relatively small series resistance, highly stable emission characteristics, and the absence of efficiency droop under pulsed biasing conditions.
Background and Objective
Objective methods to assess port wine stain (PWS) response to laser treatment have been the subject of various research efforts for several years. Herein, we present a pilot study using a newly developed, light emitting diode (LED) based spatial frequency domain imaging (SFDI) device to record quantitatively biochemical compositional changes in PWS after laser therapy.
Study Design/Patients and Methods
A SFDI system was used to image before, and after, five PWS treatment sessions [n = 4 subjects (one subject was imaged before and after two consecutive laser treatments)]. SFDI derived wide-field optical properties (absorption and scattering) and tissue chromophore concentrations including oxy-hemoglobin (ctO2Hb), deoxy-hemoglobin (ctHHb), total hemoglobin (ctTHb), and tissue oxygen saturation (stO2) are presented for skin imaged prior to and immediately after laser treatment. The SFDI derived images were analyzed by comparing the above measurements in PWS to those of normal skin and tracking changes immediately after laser exposure.
Results
Elevated oxy-hemoglobin (>20%) and tissue oxygen saturation (>5%) were measured in all PWS lesions and compared to values for normal skin prior to treatment. Laser treatment resulted in an increase in deoxy-hemoglobin (>100%), decrease in tissue oxygen saturation (>10%), and reduced scattering (>15%) in all PWS lesions. One subject was followed before and after two consecutive laser treatments and the overall improvement in PWS lesion blanching was quantitatively assessed by measuring a 45% decrease in dermal blood volume.
Conclusion
SFDI is a rapid non-contact wide-field optical technique that shows potential as an imaging device that can be used to quantify biochemical compositional changes in PWS after laser therapy. Future work will investigate the potential of SFDI to provide intra-operative guidance for laser therapy of PWS lesions on an individual patient basis.
Port wine stain (PWS) birthmarks are one class of benign congenital vascular malformation. Laser therapy is the most successful treatment modality of PWS. Unfortunately, this approach has limited efficacy, with only 10% of patients experiencing complete blanching of the PWS. To address this problem, several research groups have developed technologies and methods designed to study treatment outcome and improve treatment efficacy. This paper reviews seven optical imaging techniques currently in use or under development to assess treatment efficacy, focusing on: Reflectance spectrophotometers/tristimulus colorimeters, Laser Doppler flowmetry (LDF) and Laser Doppler imaging (LDI), Cross-polarized diffuse reflectance color imaging system (CDR), Reflectance Confocal Microscopy (RCM), Optical Coherence Tomography (OCT), Spatial Frequency Domain Imaging (SFDI), and Laser Speckle Imaging (LSI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.