The main mechanisms of interaction between Human T-lymphotropic virus type 1 (HTLV-1) and its hosts in the manifestation of the related disease including HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and Adult T-cell leukemia/lymphoma (ATLL) are yet to be determined. It is pivotal to find out the changes in the genes expression toward an asymptomatic or symptomatic states. To this end, the systems virology analysis was performed. Firstly, the differentially expressed genes (DEGs) were taken pairwise among the four sample sets of Normal, Asymptomatic Carriers (ACs), ATLL, and HAM/TSP. Afterwards, the protein-protein interaction networks were reconstructed utilizing the hub genes. In conclusion, the pathways of cells proliferation and transformation were identified in the ACs state. In addition to immune pathways in ATLL, the inflammation and cancer pathways were discened in both diseases of ATLL and HAM/TSP. The outcomes can specify the genes involved in the pathogenesis and help to design the drugs in the future.
Aim:The purpose of this study was to compare IL-1β and IL-12 gene expression in the gingival tissue of smokers and non-smokers either with healthy periodontium or with chronic periodontitis.Materials and Methods:41 individuals consisting of 21 healthy controls (11 non-smokers and 10 smokers) and 20 chronic periodontitis patients (10 non-smokers and 10 smokers) participated in this study. Samples were collected from papillary regions of targeted areas and cytokines were analyzed using Real Time PCR. Shapiro-Wilk, Mann-Witney and Independent T tests were employed for statistical analysis.Results:IL-1β gene expression in gingival tissue of non-smoker group with chronic periodontitis was significantly higher than non-smoker-healthy group (p=0.011). Smoker-chronic periodontitis group showed lower IL-1β gene expression than non-smoker-chronic periodontitis group (p=0.003). IL-12 gene expression was not significantly different between analyzed groups.Conclusion:IL-1β gene expression increases in gingival tissue of non-smoker-chronic periodontitis patients due to inflammatory processes but smoking reduces the expression of this cytokine in diseased periodontal tissues. On the other hand periodontal condition and smoking habits do not seem to affect IL-12 gene expressions in gingival tissues. Authors concluded that reduced levels of IL1 and in some extent IL12 in smoking patients are responsible for higher tissue and bone degenerations and less treatment responses in smokers.
BackgroundHuman T-lymphotropic virus 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive disease of the central nervous system that significantly affected spinal cord, nevertheless, the pathogenesis pathway and reliable biomarkers have not been well determined. This study aimed to employ high throughput meta-analysis to find major genes that are possibly involved in the pathogenesis of HAM/TSP.ResultsHigh-throughput statistical analyses identified 832, 49, and 22 differentially expressed genes for normal vs. ACs, normal vs. HAM/TSP, and ACs vs. HAM/TSP groups, respectively. The protein–protein interactions between DEGs were identified in STRING and further network analyses highlighted 24 and 6 hub genes for normal vs. HAM/TSP and ACs vs. HAM/TSP groups, respectively. Moreover, four biologically meaningful modules including 251 genes were identified for normal vs. ACs. Biological network analyses indicated the involvement of hub genes in many vital pathways like JAK-STAT signaling pathway, interferon, Interleukins, and immune pathways in the normal vs. HAM/TSP group and Metabolism of RNA, Viral mRNA Translation, Human T cell leukemia virus 1 infection, and Cell cycle in the normal vs. ACs group. Moreover, three major genes including STAT1, TAP1, and PSMB8 were identified by network analysis. Real-time PCR revealed the meaningful down-regulation of STAT1 in HAM/TSP samples than AC and normal samples (P = 0.01 and P = 0.02, respectively), up-regulation of PSMB8 in HAM/TSP samples than AC and normal samples (P = 0.04 and P = 0.01, respectively), and down-regulation of TAP1 in HAM/TSP samples than those in AC and normal samples (P = 0.008 and P = 0.02, respectively). No significant difference was found among three groups in terms of the percentage of T helper and cytotoxic T lymphocytes (P = 0.55 and P = 0.12).ConclusionsHigh-throughput data integration disclosed novel hub genes involved in important pathways in virus infection and immune systems. The comprehensive studies are needed to improve our knowledge about the pathogenesis pathways and also biomarkers of complex diseases.
Background: Human T-cell leukemia virus type 1(HTLV-1) infection is likely to induce nonneoplastic inflammatory pulmonary diseases. Therefore, an experimental study was conducted to evaluate the leukocytes' number alteration and oxidative stress in the lung and blood of HTLV-1-infected BALB/c mice, which could be of benefit for the recognition of HTLV-1 mechanism in the induction of pulmonary disorders. Materials and Methods: Twenty female BALB/c mice were divided into two groups of control and HTLV-1-infected animals. The HTLV-1-infected group was inoculated with 10 6 MT-2 HTLV-1-infected cells. Two months later, the infection was confirmed using real-time polymerase chain reaction, and then lung pathological changes, total and differential inflammatory cell counts in the blood and bronchoalveolar lavage fluid (BALF), along with oxidative stress biomarker levels in the BALF and lung tissue were evaluated. Results: In the HTLV-1-infected group, the peribronchitis score ( P < 0.01), the number of total leukocytes, neutrophils, lymphocytes, and monocytes ( P < 0.05) in the blood and BALF were increased. The number of eosinophils in the blood of the HTLV-1-infected group was higher than in the control group ( P < 0.01), whereas the number of basophils of BALF was increased in the HTLV-1-infected group ( P < 0.001). The lung and BALF oxidative stress results showed that the MDA level was increased, while the total thiol level and superoxide dismutase activity were decreased in the HTLV-1-infected group ( P < 0.01). Conclusion: The HTLV-1 infection seems to induce pulmonary inflammatory reactions by recruiting leukocytes as well as inducing oxidative stress in the lung tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.