Kiruna-type apatite-iron-oxide ores are key iron sources for modern industry, yet their origin remains controversial. Diverse ore-forming processes have been discussed, comprising low-temperature hydrothermal processes versus a high-temperature origin from magma or magmatic fluids. We present an extensive set of new and combined iron and oxygen isotope data from magnetite of Kiruna-type ores from Sweden, Chile and Iran, and compare them with new global reference data from layered intrusions, active volcanic provinces, and established low-temperature and hydrothermal iron ores. We show that approximately 80% of the magnetite from the investigated Kiruna-type ores exhibit δ
56
Fe and δ
18
O ratios that overlap with the volcanic and plutonic reference materials (> 800 °C), whereas ~20%, mainly vein-hosted and disseminated magnetite, match the low-temperature reference samples (≤400 °C). Thus, Kiruna-type ores are dominantly magmatic in origin, but may contain late-stage hydrothermal magnetite populations that can locally overprint primary high-temperature magmatic signatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.