This paper reports the mechanical behavior of resin pin-reinforced composite sandwich panels made from polyvinyl chloride core and glass/epoxy face sheets under indentation of a hemispherical indenter and three-point bending loading conditions. The goal was to study the effects of reinforcing parameters such as the number, arrangement, and diameter of the through-the-thickness resin pins on the indentation maximum load, the bending strength, and energy absorption characteristics of the tested samples under these loading conditions. The results revealed that using the resin pins to reinforce the polyvinyl chloride foam core led to increase the indentation maximum load up to 47%, and the maximum bending load up to 34%, compared to nonreinforced foam–core sandwich structures. Also, the presence of resin pins led to the change in the failure modes of specimens (i.e. from local to global deformation and failure) and consequently increased the energy absorption capability of sandwich structures by 31% and 68% respectively under indentation and bending loads.
Buckling and crushing behavior of foam-core hybrid composite sandwich columns under edgewise compressive load is dealt in this study. Composite laminates with different stacking sequence configurations made of glass and Dyneema-woven fabrics and AL 2024-T3 sheets were used in combination of polyvinyl chloride foam core to manufacture the specimens. Effects of face sheet thickness and stacking sequence configuration, slenderness ratio, boundary conditions, and sandwich reinforcement with through-thickness resin pins on the buckling and crushing behavior of the specimens were investigated. The results revealed that using the resin pins changes the unstable Euler buckling mode to a more stable progressive end-crushing and significantly increases the buckling load, specific buckling load, and energy absorption capability,
The main aim of the present research is to investigate the quasi-static penetration process of cylindrical indenters with different nose shapes into multilayered composite panels made of Dyneema and Glass woven fibers, and aluminum face sheets. For better understanding of the perforation mechanism of the composite panels, effects of indenter geometry, stacking sequences, and boundary conditions are studied and their effects on energy absorption, specific absorbed energy, maximum deformation, peak load, and failure modes are evaluated and discussed. Samples with different layering configurations loaded under quasi-static punch and indentation with loading rate of 5 mm/min using universal testing machine and cylindrical rigid indenters with different nose shapes geometries consist of blunt, hemispherical, conical, and ogival. Regarding the boundary condition effects, two different rigid fixtures are designed and manufactured with the same external square perimeter (250 × 250 mm) and two different internal perimeters of circular and square shapes respectively, with diameter of 15 mm and edge side of 100 mm. Results show that the hybrid composite panels composed of Dyneema sheets, exhibits significantly better load carrying capacity and specific absorbed energy under both loading conditions. Indenter nose shape significantly affects elastic load, peak load, and energy absorption and maximum deformation. Furthermore, from visual observations based on digital microscopic images, fiber breakage, fiber pull out, intralaminar delamination, and debonding between the composite layers within the damage zone were inspected and recognized as the main damage mechanisms of panels. Output data obtained from all the experimental investigation were reported, discussed, and commented upon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.