Due to increase in the public and stakeholders’ awareness regarding economic, environmental, and social issues, the construction industry tends to follow the sustainability policies and practices in supply chain management. Hence, one of the most crucial aspects for a construction company in this regard is sustainable supplier selection, and, to this end, an accurate and reliable model is required. In this paper a hybrid fuzzy best-worst method and fuzzy inference system model is developed for sustainable supplier selection. In the first phase of this study, after determining 19 criteria in three main aspects, the final weight of each aspect and criterion is obtained using fuzzy best-worst method approach. In the second phase, the most sustainable supplier is selected by running the weighted fuzzy inference system both in aspect and criterion level, providing more accurate results compared to the use of other available models. Finally, two different tests are employed to validate the results and evaluate the robustness of the proposed model. The novel developed model enables the decision-maker to simulate the decision-making process, reduce the calculations loads, consider a large number of criteria in decision making, and resolve the inherited uncertainties in experts’ responses.
Selecting the most resilient supplier is a crucial problem for organizations and managers in the supply chain. However, due to the inherited high degree of uncertainty in real-life projects, developing a decision-making framework in a crisp or fuzzy environment may not present accurate or reliable results for the managers. For this reason, it is better to evaluate the potential suppliers in an Interval Type-2 Fuzzy (IT2F) environment for better dealing with this ambiguity. This study developed an improved combined IT2F Best Worst Method (BWM) and IT2F technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model “Atieh Sazan” Co. as a case study, such that the IT2FBWM was employed for obtaining the weight of criteria. The IT2FTOPSIS was utilized for ranking the potential suppliers based on Hamming distance measure. In both phases, the opinions of experts as IT2F linguistic terms were employed for weighting the criteria and obtaining the relative importance of the alternatives in terms of the evaluative criteria. After obtaining the final results, the proposed model was validated by replacing Analytical Hierarchy Process (AHP) and Simple Additive Weighting (SAW) approaches separately instead of BWM for weighting the criteria. After executing both new models, it was found that the final ranking was similar to the final ranking of the proposed model, representing the reliability and accuracy of the obtained results. Moreover, it was concluded that the resilient criteria of “Reorganization” and “Redundancy” are the most determinant measures for selecting the best supplier rather than measures in the Iranian Construction Industry.
Assessing the performance of the Research and development (R&D) organizations to achieve higher productivity, growth, and development is always a critical necessity. Therefore, developing a more accurate model to evaluate the performance is always required. For this purpose, this study is aimed at developing a decision-making model for evaluating R&D performance. The model comes up with determining the most proper evaluative criteria for assessing R&D organizations. Then, it integrates Data Envelopment Analysis (DEA) with Analytical Network Process (ANP) to assess R&D performance. This paper is aimed to develop an integrated model for evaluating R&D performance. The findings of the study show that the DEA-ANP model is an accurate and acceptable model for evaluating R&D organizations’ performance.
PurposeTo come up with a prudent decision on the installation of an appropriate green wall (GW) on buildings, this study presents a novel decision-making algorithm. The proposed algorithm considers the importance of barriers hampering GW adoption, as well as their relationships with regard to different types of GWs existing in a contextual setting.Design/methodology/approachThe proposed methodological approach is based on the integration of qualitative and quantitative techniques by employing focus group discussion, fuzzy-based best-worst method and fuzzy TOPSIS.FindingsBased on the experiences of qualified experts involved in related projects in Hong Kong, the following conclusions are drawn: (1) cost, installation and maintenance-related barriers are perceived to have the highest importance, (2) modular living wall system is the most suitable GW system for the context of Hong Kong and (3) existing barriers are found to have a pivotal role in the ranking of the most suitable GW systems.Practical implicationsThe findings provide valuable insight not only for policymakers and stakeholders, but also for establishing a methodological approach that can assist decision-makers in identifying the most beneficial GW system rather than the most applicable one. This could have significant implications and introduce potential changes to the common way of practice within the industry and lay the foundation for wider adoption of GW.Originality/valueWhile previous studies have investigated the sustainability-related issues of GW façade applications, the current body of knowledge is deprived of a comprehensive methodological approach for the selection of the most suitable GW systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.