There is a great variety of two‐phase models in numerical simulations. The performance of each model complicates the numerical simulation of boiling. The challenge of the right choice of heat and mass transfer models makes this type of problem more complicated. In this research work, the volume of the fluid two‐phase model has been used to simulate the film boiling of saturated liquid. The geo‐reconstruction method also reconstructs the interface of two phases. The models of the sharp interface, Lee and Tanasawa have been employed among the available models for calculating the phase change rate and the source terms of the equations. The Numerical solver of the phase‐change is verified through the Stefan one‐dimensional vaporizing problem. Correct empirical coefficients used in both Lee and Tanasawa models are presented. Bubble detachment time, flow pattern, the periodic Nusselt number, and the bubble form have been investigated in all three phase change models. Two Berenson and Klimenko experimental correlations have been used for verification of Nusselt number derived from simulations. The Nusselt number shows a proper fit with the Klimenko's Nusselt number. Obtained Nusselt number demonstrates the Lee model is more precise than other phase change models in simulating of film boiling on the flat plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.