This study evaluates the capability of a progressive damage method in predicting the fatigue failure in glass/polyester fiber composite materials. Residual material properties in different failure modes have been obtained from testing fatigue-loaded specimens to their ultimate limits. A numerical tool utilizes the experimentally obtained values to simulate the process of damage in more complex models with high interlaminar shear stresses. The tool accounts for fatigue damage through stiffness and strength degradation rules without relying on prior calibration/modifications. Benchmark ply-drop problems under constant and variable amplitude fatigue loadings are simulated and compared against experimental results. Verification case studies show that the numerical tool can predict damage initiation and final fatigue life, successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.