An important and critical area within the broad domain of structural health monitoring, as related to reinforced civil and mechanical structures, is the assessment of creep, shrinkage, and high-temperature effects on reliability and serviceability. Unfortunately, the monitoring and impact of these inherent mechanical characteristics and behaviors, and subsequent impact on serviceability, have rarely been considered in the literature in structural health monitoring. In this paper, the microprestress-solidification creep theory for beams is generalized for the simultaneous effect of linear/nonlinear creep, shrinkage, and high temperature in a reliability framework. This study conducts a systematic time-dependent procedure for the reliability analysis of structures using a powerful nanoscale method. It must be noted that this paper aims to extend the previously developed microprestress-solidification method in a health monitoring reliability-based framework with a close look at a nonlinear creep, parameters affecting creep, and long-time high temperature. A finite element approach is proposed where creep, shrinkage, temperature, and cracking are considered using strain splitting theory. First, the model performance was evaluated by comparing the results with the experimental test available in the literature in the case of creep and shrinkage. Then, the simultaneous effect of creep, shrinkage, and temperature was compared with experimental results obtained by the authors. Reliability analysis was applied to reinforced concrete beams subjected to sustained gravity loading and uniform temperature history in order to calculate exceedance probability in the serviceability limit state. It was found that the exceedance probability of reinforced concrete beams was dependent on the shear span-to-depth ratio. In the serviceability limit state, exceedance probabilities of 0.012 and 0.157 were calculated for the span-to-depth ratios of 1 and 5, respectively. In addition, it was shown that temperature plays an important role in the reliability of reinforced concrete beams. A 4.27-fold increase was observed in the case of moderate to high temperature. Finally, for three different load levels of 40%, 70%, and 80%, the exceedance probabilities were 0.156, 0.328, and 0.527, respectively, suggesting that load level is another key parameter affecting the reliability of reinforced concrete beams. It is thus concluded these fundamental phenomenological studies should be further considered as part of the broad field of structural health monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.