Translational relevance The majority of PDOs from colorectal liver metastases were sensitive to anticancer drugs in clinical use and/or under development in late-phase clinical trials. Together with only a modest level of intrapatient inter-metastatic pharmacological heterogeneity, this reinforces a potential benefit from off-label use of drugs guided by both pharmacological profiling and established molecular markers. Correlation in the overall variation at the drug sensitivity and gene expression levels supports the relevance of transcriptomic profiling in pharmacogenomic assessments. Research.
Gene expression-based subtypes of colorectal cancer have clinical relevance, but the representativeness of primary tumors and the consensus molecular subtypes (CMS) for metastatic cancers is not well known. We investigated the metastatic heterogeneity of CMS. The best approach to subtype translation was delineated by comparisons of transcriptomic profiles from 317 primary tumors and 295 liver metastases, including multi-metastatic samples from 45 patients and 14 primary-metastasis sets. Associations were validated in an external data set (n = 618). Projection of metastases onto principal components of primary tumors showed that metastases were depleted of CMS1-immune/CMS3-metabolic signals, enriched for CMS4-mesenchymal/stromal signals, and heavily influenced by the microenvironment. The tailored CMS classifier (available in an updated version of the R package CMScaller) therefore implemented an approach to regress out the liver tissue background. The majority of classified metastases were either CMS2 or CMS4. Nonetheless, subtype switching and inter-metastatic CMS heterogeneity were frequent and increased with sampling intensity. Poor-prognostic value of CMS1/3 metastases was consistent in the context of intra-patient tumor heterogeneity.
Background Gene expression-based subtyping has the potential to form a new paradigm for stratified treatment of colorectal cancer. However, current frameworks are based on the transcriptomic profiles of primary tumors, and metastatic heterogeneity is a challenge. Here we aimed to develop a de novo metastasis-oriented framework. Methods In total, 829 transcriptomic profiles from patients with colorectal cancer were analyzed, including primary tumors, liver metastases, and non-malignant liver samples. High-resolution microarray gene expression profiling was performed of 283 liver metastases from 171 patients treated by hepatic resection, including multiregional and/or multi-metastatic samples from each of 47 patients. A single randomly selected liver metastasis sample from each patient was used for unsupervised subtype discovery by nonnegative matrix factorization, and a random forest prediction model was trained to classify multi-metastatic samples, as well as liver metastases from two independent series of 308 additional patients. Results Initial comparisons with non-malignant liver samples and primary colorectal tumors showed a highly variable degree of influence from the liver microenvironment in metastases, which contributed to inter-metastatic transcriptomic heterogeneity, but did not define subtype distinctions. The de novo liver metastasis subtype (LMS) framework recapitulated the main distinction between epithelial-like and mesenchymal-like tumors, with a strong immune and stromal component only in the latter. We also identified biologically distinct epithelial-like subtypes originating from different progenitor cell types. LMS1 metastases had several transcriptomic features of cancer aggressiveness, including secretory progenitor cell origin, oncogenic addictions, and microsatellite instability in a microsatellite stable background, as well as frequent RAS/TP53 co-mutations. The poor-prognostic association of LMS1 metastases was independent of mutation status, clinicopathological variables, and current subtyping frameworks (consensus molecular subtypes and colorectal cancer intrinsic subtypes). LMS1 was also the least heterogeneous subtype in comparisons of multiple metastases per patient, and tumor heterogeneity did not confound the prognostic value of LMS1. Conclusions We report the first large study of multi-metastatic gene expression profiling of colorectal cancer. The new metastasis-oriented subtyping framework showed potential for clinically relevant transcriptomic classification in the context of metastatic heterogeneity, and an LMS1 mini-classifier was constructed to facilitate prognostic stratification and further clinical testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.