Fiber reinforced composites offer exceptional directional mechanical properties, and combining their advantages with the capability of 3D printing has resulted in many innovative research fronts. This review aims to summarize the methods and findings of research conducted on 3D-printed carbon fiber reinforced composites. The review is focused on commercially available printers and filaments, as their results are reproducible and the findings can be applied to functional parts. As the process parameters can be readily changed in preparation of a 3D-printed part, it has been the focus of many studies. In addition to typical composite driving factors such as fiber orientation, fiber volume fraction and stacking sequence, printing parameters such as infill density, infill pattern, nozzle speed, layer thickness, built orientation, nozzle and bed temperatures have shown to influence mechanical properties. Due to the unique advantages of 3D printing, in addition to conventional unidirectional fiber orientation, concentric fiber rings have been used to optimize the mechanical performance of a part. This review surveys the literature in 3D printing of chopped and continuous carbon fiber composites to provide a reference for the state-of-the-art efforts, existing limitations and new research frontiers.
AbstractIndentation size effects have been observed in both polymers and metals but, unlike in metals, the origin of size effects in polymers is not well understood. To clarify the role of second order gradients of displacements, a model polymer is examined with spherical and Berkovich tips at probing depths between 5 and 25 μm. Applying different theories to determine the elastic modulus, it is found that with a pyramidal tip, the elastic modulus increases with decreasing indentation depth, while tests with the spherical tip yielded essentially constant values for the elastic modulus independent of indentation depth. The differences between these tips are attributed to second order displacement gradients, as they remain essentially constant with a spherical tip while they increase in magnitude with decreasing indentation depth applying a Berkovich tip.
In this study, the effects of stress concentration on the tensile properties of a 3D printed carbon fiber-nylon composite were investigated. The samples were 3D printed with continuous carbon fiber and chopped fiber reinforced nylon. Samples were manufactured with four different open hole sizes as 3. 175 mm (⅛ in), 6.35 mm (¼ in), 9.25 mm (⅜ in), and 12.7 mm (½ in). Five samples were manufactured for each hole size group. Continuous carbon fibers were printed in the longitudinal direction. Additional reinforcements were placed around the periphery of the open hole. Samples were tested under uniaxial tension. The results were compared with the prediction of fracture mechanics theories namely Average and Point Stress Criteria. The results show that failure was initiated at the stress concentration region but the progression into the hole was prevented with the presence of continuous fiber. The experimental findings show that the samples with larger holes are more sensitive to discontinuity than the ones with smaller holes. The results confirm that 3D printing can be used to strengthen the parts at the discontinuity region to mitigate the effect of stress concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.