Results of this study demonstrate potential of the proposed approach for early AD diagnosis and demonstrate capability of rs-fMRI to predict conversion from MCI to AD by identifying affected brain regions underlying this conversion.
Structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) have provided promising results in the diagnosis of Alzheimer's disease (AD), though the utility of integrating sMRI with rs-fMRI has not been explored thoroughly. We investigated the performances of rs-fMRI and sMRI in single modality and multi-modality approaches for classifying patients with mild cognitive impairment (MCI) who progress to probable AD-MCI converter (MCI-C) from those with MCI who do not progress to probable AD-MCI non-converter (MCI-NC). The cortical and subcortical measurements, e.g. cortical thickness, extracted from sMRI and graph measures extracted from rs-fMRI functional connectivity were used as features in our algorithm. We trained and tested a support vector machine to classify MCI-C from MCI-NC using rs-fMRI and sMRI features. Our algorithm for classifying MCI-C and MCI-NC utilized a small number of optimal features and achieved accuracies of 89% for sMRI, 93% for rs-fMRI, and 97% for the combination of sMRI with rs-fMRI. To our knowledge, this is the first study that investigated integration of rs-fMRI and sMRI for identification of the early stage of AD. Our findings shed light on integration of sMRI with rs-fMRI for identification of the early stages of AD.
Accurate prediction of the early stage of Alzheimer's disease (AD) is important but very challenging. The goal of this study was to utilize predictors for diagnosis conversion to AD based on integrating resting-state functional MRI (rs-fMRI) connectivity analysis and structural MRI (sMRI). We included 177 subjects in this study and aimed at identifying patients with mild cognitive impairment (MCI) who progress to AD, MCI converter (MCI-C), patients with MCI who do not progress to AD, MCI non-converter (MCI-NC), patients with AD, and healthy controls (HC). The graph theory was used to characterize different aspects of the rs-fMRI brain network by calculating measures of integration and segregation. The cortical and subcortical measurements, e.g., cortical thickness, were extracted from sMRI data. The rs-fMRI graph measures were combined with the sMRI measures to construct input features of a support vector machine (SVM) and classify different groups of subjects. Two feature selection algorithms [i.e., the discriminant correlation analysis (DCA) and sequential feature collection (SFC)] were used for feature reduction and selecting a subset of optimal features. Maximum accuracy of 67 and 56% for three-group (“AD, MCI-C, and MCI-NC” or “MCI-C, MCI-NC, and HC”) and four-group (“AD, MCI-C, MCI-NC, and HC”) classification, respectively, were obtained with the SFC feature selection algorithm. We also identified hub nodes in the rs-fMRI brain network which were associated with the early stage of AD. Our results demonstrated the potential of the proposed method based on integration of the functional and structural MRI for identification of the early stage of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.