Purpose
This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao and Lo, 2003).
Design/methodology/approach
The numerical errors in solving two-dimensional elliptic partial differential equations using the Laplacian models are investigated for regular and highly irregular node distributions over a unit square computational domain.
Findings
The numerical results show that one of the Laplacian models, which is newly developed by one of the authors (Shobeyri, 2019) can get the smallest errors for various used node distributions.
Originality/value
The newly proposed model is formulated by the hybrid of the standard ISPH Laplacian model combined with Taylor expansion and moving least squares method. The superiority of the proposed model is significant when multi-resolution irregular node distributions commonly seen in adaptive refinement strategies used to save computational cost are applied.
Purpose
The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations.
Design/methodology/approach
In this study, the considered two-dimensional unsteady advection-diffusion equations are transformed into the equivalent partial integro-differential equations via integrating from the considered unsteady advection-diffusion equation. After this stage, by using Chebyshev polynomials of the first kind and the operational matrix of integration, the integral equation would be transformed into the system of linear algebraic equations. Robustness and efficiency of the proposed method were illustrated by six numerical simulations experimentally. The numerical results confirm that the method is efficient, highly accurate, fast and stable for solving two-dimensional unsteady advection-diffusion equations.
Findings
The proposed method can solve the equations with discontinuity near the boundaries, the advection-dominated equations and the equations in irregular domains. One of the numerical test problems designed specially to evaluate the performance of the proposed method for discontinuity near boundaries.
Originality/value
This study extends the intention of one dimensional Chebyshev approximate approaches (Yuksel and Sezer, 2013; Yuksel et al., 2015) for two-dimensional unsteady advection-diffusion problems and the basic intention of our suggested method is quite different from the approaches for hyperbolic problems (Bulbul and Sezer, 2011).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.