A dynamic stiffness element for flexural vibration analysis of delaminated multilayer beams is developed and subsequently used to investigate the natural frequencies and modes of two-layer beam configurations. Using the Euler-Bernoulli bending beam theory, the governing differential equations are exploited and representative, frequency-dependent, field variables are chosen based on the closed form solution to these equations. The boundary conditions are then imposed to formulate the dynamic stiffness matrix (DSM), which relates harmonically varying loads to harmonically varying displacements at the beam ends. The bending vibration of an illustrative example problem, characterized by delamination zone of variable length, is investigated. Two computer codes, based on the conventional Finite Element Method (FEM) and the analytical solutions reported in the literature, are also developed and used for comparison. The intact and defective beam natural frequencies and modes obtained from the proposed DSM method are presented along with the FEM and analytical results and those available in the literature.
A simple approach for the suppression of the tremor associated with Parkinson's disease is presented. The proposed system is a tuned vibration absorber (TVA), which has been very effective in the suppression of vibrations in an experimental model of the human arm with two degrees of freedom. Theoretical and numerical methods were used to study the behaviour of the arm model and to develop an effective tremor reduction approach. Based on these studies, a vibration absorber was designed, tested numerically and fabricated for experimental testing. Experimental investigations indicated that optimum control performance was related to the position of the controller and the excitation frequency. With a distance of 160 mm from the end of forearm, the TVA was found to have the best performance, and, for different tremor frequencies, the vibration of the experimental model was reduced by more than 80%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.