It is well established that the medial-temporal lobe (MTL) is critical for recognition memory. The MTL is known to be composed of distinct structures that are organized in a hierarchical manner. At present, it remains controversial whether lower structures in this hierarchy, such as perirhinal cortex, support memory functions that are distinct from those of higher structures, in particular the hippocampus. Perirhinal cortex has been proposed to play a specific role in the assessment of familiarity during recognition, which can be distinguished from the selective contributions of the hippocampus to the recollection of episodic detail. Some researchers have argued, however, that the distinction between familiarity and recollection cannot capture functional specialization within the MTL and have proposed single-process accounts. Evidence supporting the dual-process view comes from demonstrations that selective hippocampal damage can produce isolated recollection impairments. It is unclear, however, whether temporal-lobe lesions that spare the hippocampus can produce selective familiarity impairments. Without this demonstration, single-process accounts cannot be ruled out. We examined recognition memory in NB, an individual who underwent surgical resection of left anterior temporal-lobe structures for treatment of intractable epilepsy. Her resection included a large portion of perirhinal cortex but spared the hippocampus. The results of four experiments based on three different experimental procedures (remember-know paradigm, receiver operating characteristics, and response-deadline procedure) indicate that NB exhibits impaired familiarity with preserved recollection. The present findings thus provide a crucial missing piece of support for functional specialization in the MTL.epilepsy ͉ medial-temporal lobe ͉ perirhinal cortex ͉ recognition memory
Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS. Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state fMRI. J Neurophysiol 103: 3398-3406, 2010. First published April 21, 2010 doi:10.1152/jn.00141.2010. The rodent brain is organized into functional networks that can be studied through examination of synchronized low-frequency spontaneous fluctuations (LFFs) of the functional magnetic resonance imaging -blood-oxygen-level-dependent (BOLD) signal. In this study, resting networks of LFFs were estimated from the whole-brain BOLD signals using independent component analysis (ICA). ICA provides a hypothesis-free technique for determining the functional connectivity map that does not require a priori selection of a seed region. Twenty Long-Evans rats were anesthetized with isoflurane (1%, n ϭ 10) or ketamine/xylazine (50/6 mg · kg Ϫ1 · h Ϫ1 ip, n ϭ 10) and imaged for 5-10 min in a 9.4 T MR scanner without experimental stimulation or task requirement. Independent, synchronous LFFs of BOLD signals were found to exist in clustered, bilaterally symmetric regions of both cortical and subcortical structures, including primary and secondary somatosensory cortices, motor cortices, visual cortices, posterior and anterior cingulate cortices, hippocampi, caudate-putamen, and thalamic and hypothalamic nuclei. The somatosensory and motor cortices typically demonstrated both symmetric and asymmetric components with unique frequency profiles. Similar independent network components were found under isoflurane and ketamine/xylazine anesthesia. The report demonstrates, for the first time, 12 independent resting networks that are bilaterally synchronous in different cortical and subcortical areas of the rat brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.