The aim of present study was to improve compost quality as well as to achieve an optimum C/N ratio in compost, reduction in heavy metal content and increased water‐holding capacity of composting piles in arid areas. Four windrow compost piles were prepared by mixing sawdust at various dosages with municipal solid waste (MSW). The sawdust was mixed with MSW at 0% (MSW0), 16% (MSW16), 32% (MSW32), and 70% (MSW70) on dry weight basis. The compost piles were monitored daily by recording the temperature, while, weekly measurement was done on C/N ratio, moisture, pH, and electrical conductivity (EC). The addition of 16% sawdust increased the initial C/N to the optimum level and decreased N loss during the composting process. The MSW16 and MSW32 exhibited better temperature dynamics and their composting period seemed to be shorter than that of MSW0 and MSW70. Moreover, addition of sawdust caused lowering of moisture loss from the composting piles. Sawdust admixtures also produced lowering of pH and EC values and led to lower heavy metal content in final products. The quality of the final compost makes it possible to propose the use of this experimental procedure for building up a novel mass reduction of the initial composted waste mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.