Mycobacterium bovis (M. bovis) is a slow-growing bacteria that can intracellularly reduce selenium ions to elemental selenium nanoparticles (SeNPs). We used bacterial lysates along with vitamin C to help the synthesis of SeNPs coated with M. bovis Bacille Calmette-Guérin (BCG) crude hydrophobic materials. However, the large-scale fabrication, separation, extraction, and purification of intercellular SeNPs which are prepared by using M. bovis, have many complexities. So, we developed a simple method for preparation of above BCG-coated nanoparticles and tested its potential immune-modulatory effects. In the current investigation, we cultivated the M. bovis in conventional media and prepared total cell lysates from this bacterium by just applying freeze and thaw and ultra-sonication. The resulting cell lysates were added to the solution containing selenium ions before adding the ascorbic acid as a reducing agent. At the end of the process, the fabricated selenium nanoparticles were separated by centrifugation and characterized by different instrumentation methods. In the next step, to evaluate the immune-modulatory effects of the hepatitis B surface antigen (HBsAg) vaccine alone, and in combination with plain SeNPs or SeNPs-BCG lysate, the serum level of interferon-gamma (IFN-γ) was determined in different groups by enzyme-linked immunosorbent assay (ELISA). This study showed adjuvant effects of prepared nanoparticles (in both 10 µg/300 µL and 100 µg/300 µL doses) in increasing the level of interferon-gamma (IFN-γ) in comparison with vaccine alone. Moreover, in both doses of SeNPs-BCG lysate, the level of interferon-gamma (IFN-γ) was remarkably higher than the same doses of plain SeNPs. As a result, synthesized SeNPs in the presence of whole-cell lysates of M. bovis indicated a greater ability to induce the interferon-gamma (IFN-γ) compared with other groups. Additionally, its easy fabrication procedure can be considered its superiority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.