Gamification is here to stay, and tourism and hospitality online review platforms are taking advantage of it to attract travelers and motivate them to contribute to their websites. Yet, literature in tourism is scarce in studying how effectively is users' behavior changing through gamification features. This research aims at filling such gap through a data-driven approach based on a large volume of online reviews (a total of 67,685) collected from TripAdvisor between 2016 and 2017. Four artificial neural networks were trained to model title and review's word length, and title and review's sentiment score, using as input 12 gamification features used in TripAdvisor including points and badges. After validating the accuracy of the model for extracting knowledge, the data-based sensitivity analysis was applied to understand how each of the 12 features contributed to explaining review length and its sentiment score. Three badge features were considered the most relevant ones, including the total number of badges, the passport badges, and the explorer badges, providing evidence of a relation between gamification features and traveler's behavior when writing reviews.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.