Credit scoring is an essential tool used by global financial institutions and credit lenders for financial decision making. In this paper, we introduce a new method based on Gaussian Mixture Model (GMM) to forecast the probability of default for individual loan applicants. Clustering similar customers with each other, our model associates a probability of being healthy to each group. In addition, our GMM-based model probabilistically associates individual samples to clusters, and then estimates the probability of default for each individual based on how it relates to GMM clusters. We provide applications for risk managers and decision makers in banks and non-bank financial institutions to maximize profit and mitigate the expected loss by giving loans to those who have a probability of default below a decision threshold. Our model has a number of advantages. First, it gives a probabilistic view of credit standing for each individual applicant instead of a binary classification and therefore provides more information for financial decision makers. Second, the expected loss on the train set calculated by our GMM-based default probabilities is very close to the actual loss, and third, our approach is computationally efficient.
Credit scoring is a rapidly expanding analytical technique used by banks and other financial institutions. Academic studies on credit scoring provide a range of classification techniques used to differentiate between good and bad borrowers. The main contribution of this paper is to introduce a new method for credit scoring based on Gaussian Mixture Models. Our algorithm classifies consumers into groups which are labeled as positive or negative. Labels are estimated according to the probability associated with each class. We apply our model with real world databases from Australia, Japan, and Germany. Numerical results show that not only our model's performance is comparable to others, but also its flexibility avoids over-fitting even in the absence of standard cross validation techniques. The framework developed by this paper can provide a computationally efficient and powerful tool for assessment of consumer default risk in related financial institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.