Background: In recent years, some studies were conducted to evaluate the effects of stem cells from different sources on patients with spinal cord injury (SCI). This study was carried out to evaluate the feasibility and therapeutic potential of autologous bone marrow cell (BMC) transplantation in 11 complete spinal cord injured patients at thoracic level. Methods and materials: This nonrandomized clinical trial compared the results of autologous BMC transplantation into cerebrospinal fluid (CSF) via lumbar puncture (LP) in 11 patients having complete SCI, with 20 patients as control group who received conventional treatment without BMC transplantation. The patients underwent preoperative and follow-up neurological assessments using the American Spinal Injury Association (ASIA) impairment scale. Then, the participants were followed for 12-33 months. Results: Eleven patients with the mean age of 33.2 ± 8.9 years and 20 patients with the mean age of 33.5 ± 7.2 years were enrolled in the study and in the control group, respectively. None of the patients in the study and control group experienced any adverse reaction and complications, neither after routine treatment nor after cell transplantation. Five patients out of 11 (45.5%) in the study group and three patients in the control group (15%) showed marked recovery, but the result was statistically borderline (P = 0.095). Conclusion: We conclude that transplantation of autologous BMC via LP is a feasible and safe technique, but at the moment, no clear answer can be given regarding the clinical potential, despite a potential tendency to treat SCI patients, observed through statistics.
Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.
The impact of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) at various frequencies and amplitudes was investigated on cell cycle, apoptosis and viability of the Glioblastoma Multiforme (GBM) cell line (U87), in vitro. The GBM is a malignant brain tumor with high mortality in humans and poorly responsive to the most common type of cancer treatments, such as surgery, chemotherapy and radiation therapy. U87 cells with five experimental groups (I-V) were exposed to various ELF-PEMFs for 2, 4 and 24 h, as follows: (I) no exposure, control; (II) 50 Hz 100 ± 15 G; (III) 100 Hz 100 ± 15 G; (IV) 10 Hz 50 ± 10 G; (V) 50 Hz 50 ± 10 G. The morphology properties, cell viability and gene expression of proteins involved in cell cycle regulation (Cyclin-D1 and P53) and apoptosis (Caspase-3) were investigated. After 24 h, the cell viability and Cyclin-D1 expression increased in Group II (30%, 45%), whereas they decreased in Groups III (29%, 31%) and IV (21%, 34%); P53 and Caspase-3 elevated only in Group III; and no significant difference was observed in Group V, respectively, compared with the control (p < 0.05). The data suggest that the proliferation and apoptosis of human GBM are influenced by exposure to ELF-PEMFs in different time-dependent frequencies and amplitudes. The fact that some of the ELF-PEMFs frequencies and amplitudes favor U87 cells proliferation indicates precaution for the use of medical devices related to the MFs on cancer patients. On the other hand, some other ELF-PEMFs frequencies and intensities arresting U87 cells growth could open the way to develop novel therapeutic approaches.
The aim of this study was to investigate the effects of transplanted Wharton's jelly mesenchymal stem cells (WJMSCs) of caprine umbilical cord on cutaneous wound healing process in goat. After collection of caprine pregnant uterus of mixed breed goats from abattoir, the Wharton's jelly (WJ) of umbilical cord was harvested. The tissues were minced in ventilated flasks and explant culture method was used for separating mesenchymal stem cells (MSCs). The isolated cells were immunostained for Actin protein, histochemically assayed for the presence of alkaline phosphatase activity, and analyzed for detection of matrix receptors (CD44) and hematopoetic lineage markers (CD34), using flow cytometery. After The isolated cells, 3×10(6) MSCs were stained with BrdU and prepared for transplantation to each wound. Four 3-cm linear full thickness skin incisions were made on both sides of thoracic vertebrate of four Raeini goats (two wounds on each side). The left wounds were implanted with MSCs in 0.6 ml of Phosphate buffer saline (PBS), and the right wounds considered as control group that received 0.6 ml of PBS. The samples were taken from the wounds 7 and 12 days after the wounding, and healing process was compared histologically between the two groups. Anti-BrdU staining showed that the transplanted cells were still alive in the wound bed during the study. The histopathological study revealed that re-epithelialization was complete at days 7 in treated wounds with WJMSCs, whereas in control wound the wounds still showed incomplete epithelialization 12 days after wounding. Also, microscopic evaluation showed less inflammation, thinner granulation tissue formation with minimum scar in the treated wounds in comparison with control wounds. In conclusion, this study demonstrates the beneficial effect of caprine WJMSCs in cutaneous wound healing in goat.
Stem cell injection at the site of injury can enhance contractile function of the anal sphincter without surgical repair. Transplantation of stem cells, particularly bone marrow mesenchymal cells, may provide an effective tool for treating anal sphincter injuries in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.