At later phases of folliculogenesis, the mammalian ovarian follicle contains layers of granulosa cells surrounding an antral cavity. To better understand the molecular basis of follicular growth and granulosa cell maturation, we study transcriptome profiling of granulosa cells from small (<5 mm) and large (>10 mm) bovine follicles using simultaneous method of Affymetrix microarrays (24,128 probe sets) and RNA-Seq data sets. This study proposes a computational method to discover the functional miRNA-mRNA regulatory modules, that is, groups of miRNAs and their target mRNAs that are believed to take part cooperatively in post-transcriptional gene regulation under specific conditions. The reconstructed network was named Integrated miRNA-mRNA Bipartite Network. 277 genes and 6 key modules were disclosed through clustering for mRNA master list. The 66 genes are among the genes that belong to at least two modules. All these genes, being involved in at least one of the phenomena, namely cell survival, proliferation, metastasis and apoptosis, have an overexpression pattern ( < 0.01). For miRNA master list, a total of 172 sequences were differentially expressed ( < 0.01) between dominant (large) and each of subordinate (small) follicles. Within the follicle, these miRNAs were predominantly expressed in mural granulosa cells. Finally, predicted and validated targets of these miRNAs enriched in dominant (large) follicles were identified, which are mapped to signaling pathways involved in follicular cell proliferation, steroidogenesis, PI3K/AKT/mTOR and Ras/Raf/MEK/ERK. The identification of miRNAs and their target mRNAs and the construction of their regulatory networks may give new insights into biological procedures.
The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.
BackgroundTEK signaling plays a very important role in folliculogenesis. It activates Ras/ERK/MYC, PI3K/AKT/mTORC1 and ovarian steroidogenesis activation pathways. These are the main pathways for cell growth, differentiation, migration, adhesion, proliferation, survival and protein synthesis.ResultsTEK signaling on each of the two important pathways where levels of pERK, pMYC, pAkt, pMCL1 and pEIF4EBP1 are increased in dominant follicles and pMYC is decreased in dominant follicles. Over activation of ERK and MYC which are the main cell growth and proliferation and over activation of Akt, MCl1, mTORC1 and EIF4EBP1 which are the main cell survival and protein synthesis factors act as promoting factors for folliculogenesis. In case of over expression of hsa-miR-30d-3p and hsa-miR-451a, MYC activity level is considerably increased in subordinate follicles. Our simulation results show that in the presence of has-miR-548v and bta-miR-22-3p, downstream factors of pathways are inhibited.ConclusionsOur work offers insight into the design of natural biological procedures and makes predictions that can guide further experimental studies on folliculogenesis pathways. Moreover, it defines a simple signal processing unit that may be useful for engineering synthetic biology and genes circuits to carry out cell-based computation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13048-017-0371-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.