In this study, a viscose/polyester fabric was printed by disperse and vat dyes to match the reflectance characteristics of the NATO black and green hues with forest environment in the visible/near‐infrared (Vis‐NIR) reflection spectrum. The black and activated carbon nanoparticles were also added to the printing paste to match the reflectance of hues. Color components and Vis‐NIR reflective behavior of printed fabrics were measured by reflection spectrophotometer. The rubbing, washing and light fastness, water absorption time, air permeability, bending length, and crease recovery angle of printed fabrics were also studied. Additionally, the strength properties of samples were measured. The reflectance behavior of the samples showed that the use of the black and activated carbon nanoparticles results in diminution of the Vis‐NIR reflection. The strength, air permeability, and bending length of printed fabrics have decreased, while the angle of crease recovery and the time of water droplet absorption have increased. The rubbing, washing, and light stabilities of printed samples were also measured as appropriate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.