Abstract. Our study presents a set of form-finding procedures to explore curved structures made from interlaced panels. Interlacing introduces a particular coupling between assembly components which has to be formulated along with a pertinent flexible body model. We examine here a hybrid approach: panels are simulated a first time using an elastic rod model formulated within a constrained elastic energy minimization where user can virtually buckle, twist and interlace strip assemblies. A thin shell model dynamically integrated comes complementary to the rod approach in order to resolve intersections in case of panels colliding while interlaced. Some conceptual structures are presented to demonstrated the procedure.
Timber Fabric structures (TFS) initiate from a correspondence between textile principles and recent industrial developments in producing cross laminated timber panels. Several individual timber strips are interlaced according to a pattern and result in an innovative space structure. The obtained three-dimensional geometry can be regarded as the relaxed configuration of deformed panels under the imposed boundary conditions. We herein propose a form-finding procedure, which reproduces this deformed configuration as the steady state of a pseudo transient constrained dynamic problem. The corresponding nonlinear problem involves finite rotation regime and contact handling through the cross section and on both panel faces. To effectively deal with nonlinear constraints, a new modified dynamic relaxation method is herein used which combines elastic material behavior with a fictitious stiffness proportional damping into an equivalent fictitious viscous material model. The procedure is implemented as an ABAQUS/Explicit user subroutine VUMAT and the overall accuracy of the numerical results has been studied for a number of geometrically nonlinear shell benchmark problems. This numerical approach is then employed to simulate the assembly process for a Timber Fabric Module (TFM), an interlaced assembly of two timber strips. The simulated geometry for the deformed surfaces is then extracted and is compared with a 3D processed surface mesh obtained from scanning a built-in prototype with noncontact Laser scanner arm to validate the simulation procedure.
The prototype presented in this chapter utilizes the technique of curved folding for the design of a thin-shell structure built from curved cross-laminated timber panels (CLT). The curved-folded geometry allows for a span of 13.5 m, at a shell thickness of only 77 mm. The construction requires curved line CLT joints, which are difficult to address with state-of-the-art jointing techniques for CLT. Inspired by traditional woodworking joinery, we have designed connections for the integrated attachment of curved CLT panels, utilizing digital geometry processing tools to combine the advantages of traditional joinery techniques with those of modern automation technology.
SummaryThe ambitious goal of the ongoing research at IBOIS, the Laboratory of timber constructions at the Ecole Polytechnique Fédérale de Lausanne (EPFL) is to develop a next generation of timber constructions made out of innovative timber-derived products, through applying textile principles on the building scale. The presented structure is a modular composition of timber folded panels, notably demonstrates an example of applying the geometric techniques used to produce modular patterns and lattices to timber construction context. Effectively, it is shown that complex space structures can be designed using simple connection technology between elements. Moreover, by taking advantage of advanced CAM process, complex planar timber elements are cut in large scale and assembled with high precision as for the prototype of the structure presented in this paper. The folding concept corresponds to a planar reciprocal frame structure. The basic module is consisted of two mutually supporting timber folded panels which are slipped in, consecutively, along their cuts, to build up an arch. The inter-module connection's stability is provided by contact boundary condition over the slide joints. The fundamental mechanical properties of the structure are examined using Finite Element Method and considering the non-linear contact boundary condition. The static behavior is studied under the self-weight load case as well as the modal dynamic response. According to analysis results, and by aid of a CAD parametric model, structural and geometrical alternatives are proposed to improve the structural performance. A prototype based on this geometric principal has been fabricated and assembled to explore feasibility of the concept in the building scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.