RNA sequencing is an increasingly popular technology for genome-wide analysis of transcript sequence and abundance. However, understanding of the sources of technical and interlaboratory variation is still limited. To address this, the GEUVADIS consortium sequenced mRNAs and small RNAs of lymphoblastoid cell lines of 465 individuals in seven sequencing centers, with a large number of replicates. The variation between laboratories appeared to be considerably smaller than the already limited biological variation. Laboratory effects were mainly seen in differences in insert size and GC content and could be adequately corrected for. In small-RNA sequencing, the microRNA (miRNA) content differed widely between samples owing to competitive sequencing of rRNA fragments. This did not affect relative quantification of miRNAs. We conclude that distributing RNA sequencing among different laboratories is feasible, given proper standardization and randomization procedures. We provide a set of quality measures and guidelines for assessing technical biases in RNA-seq data.
The choice for a polyadenylation site determines the length of the 3′-untranslated region (3′-UTRs) of an mRNA. Inclusion or exclusion of regulatory sequences in the 3′-UTR may ultimately affect gene expression levels. Poly(A) binding protein nuclear 1 (PABPN1) is involved in polyadenylation of pre-mRNAs. An alanine repeat expansion in PABPN1 (exp-PABPN1) causes oculopharyngeal muscular dystrophy (OPMD). We hypothesized that previously observed disturbed gene expression patterns in OPMD muscles may have been the result of an effect of PABPN1 on alternative polyadenylation, influencing mRNA stability, localization and translation. A single molecule polyadenylation site sequencing method was developed to explore polyadenylation site usage on a genome-wide level in mice overexpressing exp-PABPN1. We identified 2012 transcripts with altered polyadenylation site usage. In the far majority, more proximal alternative polyadenylation sites were used, resulting in shorter 3′-UTRs. 3′-UTR shortening was generally associated with increased expression. Similar changes in polyadenylation site usage were observed after knockdown or overexpression of expanded but not wild-type PABPN1 in cultured myogenic cells. Our data indicate that PABPN1 is important for polyadenylation site selection and that reduced availability of functional PABPN1 in OPMD muscles results in use of alternative polyadenylation sites, leading to large-scale deregulation of gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.