Introduction: The Coronavirus has spread across the globe and infected millions of people, having devastating effect on the global public health and economies. A fast diagnostic system should be implemented to mitigate the impact of the virus and save lives. In this study, we propose a decision tree-based ensemble model using two mixtures of discriminative experts (MoE) to classify COVID-19 and non-COVID-19 lung infections on chest X-ray images. The Epistocracy algorithm, a hyper-heuristic evolutionary method, is employed to optimize the neural networks used in this work. Using this approach can help detect COVID-19 cases and accelerate treatment of those who need it the most. Data: we collected 2,500 chest X-ray images from Henry Ford Health System consisting of 1,250 Covid images and 1,250 non-Covid images. The input images have been cropped and resized to 224 by 224 pixels. Out of 2,500 images, we left out 500 images containing 250 Covid and 250 non-Covid for testing. The rest, 2,000 images, were used 80% for training and 20% for validation. Methods and Results: To improve the accuracy of the proposed model, first we divided our 2,000 images into 5 different clusters using K-Means clustering algorithm with VGG16 feature extractor to help build strong discriminative expert models to be used in our proposed classifier. We trained VGG16, VGG19, InceptionV3, InceptionResNetV2, MobileNetV2, EfficientNetB7, Xception, and DenseNet201 to classify each cluster into Covid and non-Covid cases. The best result was obtained from VGG16 as a base model with a deep neural network as a head model optimized by Epistocracy algorithm. Then we built a mixture of transfer learning-based experts consisting of 5 different VGG16 models supervised by InceptionV3 as a gating network. Finally, we built a decision tree-based ensemble model to determine the classification of the data using two different MoEs with highest accuracies. As a result, for initial clusters c1, c2, c3, c4, and c5 we obtained validation accuracy of 92.50%, 86.30%, 86.51%, 85.34%, and 93.62% respectively. The first MoE had 93.75% accuracy on validation, and the second MoE had 94.25%. The final ensemble model on average obtained 94% accuracy on the testing dataset. More specifically, we got 96% accuracy on Covid images and 92% accuracy on non-Covid. Conclusion: we showed that an ensemble model consisting of two mixtures of cluster-based discriminative convolutional neural network experts can be used to detect Covid from non-Covid with high accuracy, and Epistocracy algorithm can be effectively used to optimize the hyper-parameters of the proposed models. Citation Format: Seyed Ziae Mousavi Mojab, Seyedmohammad Shams, Farshad Fotouhi, Hamid Soltanian-Zadeh. EpistoNet: An ensemble of deep convolutional neural networks using mixture of discriminative experts for detecting COVID-19 on chest X-ray images [abstract]. In: Proceedings of the AACR Virtual Meeting: COVID-19 and Cancer; 2021 Feb 3-5. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(6_Suppl):Abstract nr P05.
The Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we propose EpistoNet, a decision tree-based ensemble model using two mixtures of discriminative experts to classify COVID-19 lung infection from chest X-ray images. To optimize the architecture and hyper-parameters of the designed neural networks, we employed Epistocracy algorithm, a novel hyper-heuristic evolutionary method. Using 2,500 chest X-ray images consisting of 1,250 COVID-19 and 1,250 non-COVID-19 cases, we left out 500 images for testing and partitioned the remaining 2,000 images into 5 different clusters using K-means clustering algorithm. We trained multiple deep convolutional neural networks on each cluster to help build a mixture of strong discriminative experts from the top-performing models supervised by a gating network. The final ensemble model obtained 95% accuracy on COVID-19 images and 93% accuracy on non-COVID-19. The experimental results show that EpistoNet can accurately, and reliably be used to detect COVID-19 infection in the chest X-ray images, and Epistocracy algorithm can be effectively used to optimize the hyper-parameters of the proposed models.
The Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we propose EpistoNet, a decision tree-based ensemble model using two mixtures of discriminative experts to classify COVID-19 lung infection from chest X-ray images. To optimize the architecture and hyper-parameters of the designed neural networks, we employed Epistocracy algorithm, a recently proposed hyper-heuristic evolutionary method. Using 2500 chest X-ray images consisting of 1250 COVID-19 and 1250 non-COVID-19 cases, we left out 500 images for testing and partitioned the remaining 2000 images into 5 different clusters using K-means clustering algorithm. We trained multiple deep convolutional neural networks on each cluster to help build a mixture of strong discriminative experts from the top-performing models supervised by a gating network. The final ensemble model obtained 95% accuracy on COVID-19 images and 93% accuracy on non-COVID-19. The experimental results show that EpistoNet can accurately, and reliably be used to detect COVID-19 infection in the chest X-ray images, and Epistocracy algorithm can be effectively used to optimize the hyper-parameters of the proposed models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.