In insect midgut, prostaglandins (PGs) play a crucial role in defending bacterial and malarial pathogens. However, little is known about the PG signalling pathway in the midgut. A dual oxidase ( Se-Duox ) with presumed function of catalysing reactive oxygen species (ROS) production in the midgut was identified in beet armyworm, Spodoptera exigua . Se-Duox was expressed in all developmental stages, exhibiting relatively high expression levels in the midgut of late larval instars. Se-Duox expression was upregulated upon bacterial challenge. RNA interference (RNAi) of Se-Duox expression significantly suppressed ROS levels in the midgut lumen. The suppression of ROS levels increased insecticidal activity of Serratia marcescens after oral infection. Interestingly, treatment with a PLA 2 inhibitor prevented the induction of Se-Duox expression in response to bacterial challenge. On the other hand, addition of its catalytic product rescued the induction of Se-Duox expression. Especially, PG synthesis inhibitor significantly suppressed Se-Duox expression, while the addition of PGE 2 or PGD 2 rescued the inhibition. Subsequent PG signals involved cAMP and downstream components because specific inhibitors of cAMP signal components such as adenylate cyclase (AC) and protein kinase A (PKA) significantly inhibited Se-Duox expression. Indeed, addition of a cAMP analogue stimulated Se-Duox expression in the midgut. Furthermore, individual RNAi specific to PGE 2 receptor (a trimeric G-protein subunit), AC, PKA or cAMP-responsive element-binding protein resulted in suppression of Se-Duox expression. These results suggest that PGs can activate midgut immunity via cAMP signalling pathway by inducing Se-Duox expression along with increased ROS levels.
Several mosquitoes transmit human pathogens by blood feeding, with the gut being the main entrance for the pathogens. Thus, the gut epithelium defends the pathogens by eliciting potent immune responses. However, it was unclear how the mosquito gut discriminates pathogens among various microflora in the lumen. This study proposed a hypothesis that a damage signal might be specifically induced by pathogens in the gut. The Asian tiger mosquito, <i>Aedes albopictus</i>, encodes dorsal switch protein 1 (<i>Aa-DSP1</i>) as a putative damage-associated molecular pattern (DAMP). Aa-DSP1 was localized in the nucleus of the midgut epithelium in naïve larvae. Upon infection by a pathogenic bacterium, <i>Serratia marcescens</i>, Aa-DSP1 was released to hemocoel and activated phospholipase A<sub>2</sub> (PLA<sub>2</sub>). The activated PLA<sub>2</sub> increased the level of prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) in the gut and subsequently increased Ca<sup>2+</sup> signal to produce reactive oxygen species (ROS) via dual oxidase (Duox). Inhibition of Aa-DSP1 via RNA interference or specific inhibitor treatment failed to increase PGE<sub>2</sub>/Ca<sup>2+</sup> signal upon the bacterial infection. Thus, the inhibitors specifically targeting eicosanoid biosynthesis significantly prevented the upregulation of ROS production in the gut and enhanced mosquito mortality after the bacterial infection. However, such inhibitory effects were rescued by adding PGE<sub>2</sub>. These suggest that Aa-DSP1 plays an important role in immune response of the mosquito gut as a DAMP during pathogen infection by triggering a signaling pathway, DSP1/PLA<sub>2</sub>/Ca<sup>2+</sup>/Duox.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), the cotton bollworm, is a destructive pest which is famous for its resistance to a variety of insecticides. RNA interference is a posttranscriptional gene silencing mechanism that has become a popular tool to control insect pests, triggered by double-stranded RNAs (dsRNAs). The effect of ingestion and injection delivery methods of dsRNA related to some protease genes including Trypsin (Ha-TRY39 and Ha-TRY96), Chymotrypsin (Ha-CHY), and Cathepsin L (Ha-CAT) on growth and development of H. armigera was investigated in this study. All protease genes encoded full ORFs and were expressed in all H. armigera larvae stages and tissues. In both injection and feeding bioassays, Ha-RNAi CHY's performance outperformed that of other protease genes. CHY enzyme activity in the midgut of larvae was significantly reduced after treatment with ds-HaCHY. Oral administration of ds-CHY also resulted in significant mortality of H. armigera larvae.However, because of the high RNase activity in the midgut lumen of lepidoptera, a large amount of dsRNA was needed to effectively kill instars of H. armigera. To reduce dsRNA degradation, bacterial expression and dsRNA formulation were used. After oral administration, it was toxic to H. armigera larvae. Before oral administration, bacterial cells were sonicated to increase dsRNA release. The RNA interference efficiency of sonicated bacteria was significantly increased,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.