In this paper, ultrasonic irradiation was applied for the synthesis of K2Ti6O13 nanobelts and novel nanocomposite (PbS-CdS/Ti6O13) through ion exchanging and co-intercalation processes. Thirty minutes of ultrasonic irradiation caused the formation of pure, uniform potassium hexatitanate with smaller particle size. The incorporation of PbS and CdS nanoparticles into the layers and on the surface of titanate in the presence of ultrasound was done directly, without pre-treatment process and led to the preparation of new nanocomposite. The physicochemical properties of the layered K2Ti6O13 and PbS-CdS/Ti6O13 nanocomposite were analyzed by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectra (UV-vis), Fourier transform infrared spectroscopy (FTIR) and photoluminescence technique (PL). The results showed that the PbS-CdS/Ti6O13 possessed a higher interlayer spacing than that of K2Ti6O13, which indicated the formation of an intercalated nanomaterial. Besides that the absorption edge of titanate shifted to the visible light region owing to the incorporation of semiconductor guest molecules. These characteristics make these nanocomposites promising for use as photocatalysts. Besides that, other samples were synthesized by stirring method at the same conditions and their characteristics were compared with sono-synthesized samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.