Utilizing dynamic resource allocation for load balancing is considered as an important optimization process in cloud computing. In order to achieve maximum resource efficiency and scalability in a speedy manner this process is concerned with multiple objectives for an effective distribution of loads among virtual machines. In this realm, exploring new algorithms, as well as development of novel algorithms, is highly desired for technological advancement and continued progress in resource allocation application in cloud computing. Accordingly, this paper explores the application of two relatively new optimization algorithms and further proposes a hybrid algorithm for load balancing which can contribute well in maximizing the throughput of the cloud provider's network. The proposed algorithm is a hybrid of teaching-learning-based optimization algorithm (TLBO) and grey wolves optimization algorithm (GW). The hybrid algorithm performs more efficiently than utilizing every single one of these algorithms. Furthermore, it well balances the priorities and effectively considers load balancing based on time, cost, and avoidance of local optimum traps, which consequently leads to minimal amount of waiting time. To evaluate the effectiveness of the proposed algorithm, a comparison with the TLBO and GW algorithms is conducted and the experimental results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.