Ship building, as an energy-intensive sector, produces significant amounts of air emissions, including greenhouse gases. Most research in greenhouse gas reductions from shipping concentrates on the reduction in emissions during the operational phase. However, as emissions during ship operation are reduced, the construction and dismantling phases of ships are becoming increasingly important in the assessment of the life-cycle impact of ships. In this study, priorities for a Turkish shipyard to become energy efficient were identified by means of a semi-structured questionnaire and an interview. This was undertaken using Fuzzy Multi-Criteria Decision-Making methods, including the Fuzzy Analytical Hierarchy Process and Fuzzy Order of Preference by Similarity to Ideal Solution, which are part of a proposed systematic and transdisciplinary Energy Management Framework and System. By applying Multi-Criteria Decision-Making methods, this framework supports the shipyard’s decision makers to make rational and optimized decisions regarding energy sectors within their activities. Applying the framework has significant potential to help achieve good product quality while reducing costs and environmental impacts, and can thereby enhance the sustainability of shipping. Moreover, the framework can boost both business and socio-economic perspectives for the shipyard, and improve its reputation and competitiveness, in alignment with achieving the Nationally Determined Contributions of States under the Paris Agreement.
Through a systematic literature review and a holistic perspective, the study proposes a conceptual transdisciplinary framework to overcome energy efficiency barriers during the shipbuilding phase. The process of the proposed transdisciplinary framework consists of five steps of “goal formation”, “system analyzing”, “scenario construction”, “multi-criteria decision making assessment” and “strategy building” to identify and rank the energy efficiency barriers during ship construction based on decision makers’ priorities. The framework categorizes the barriers into five disciplines—operations, policies and regulations, technology and innovation, the human elements, and economics—and the framework is applied to an Iranian shipyard. The results show that the economic barriers have the greatest impact, while the human barriers have the least impact on the shipyard’s energy performance. Due to the generalized structure of the framework, it categorizes not only energy efficiency barriers according to the importance and priorities of stakeholders in the shipbuilding industry, but can also be applied to other phases of the ship life cycle and even to other industries. By applying the framework, decision-makers can make rational and optimal decisions to be able to invest in energy efficiency measures based on their priorities.
Although shipping has significant positive effect on human civilization, it introduced negative environmental impacts such as oil, air, and plastic pollutions. Many negative externalities through international and local regulations have been in place, and preventive actions have been taken to monitor and control. However, underwater noise pollution as an emerging negative shipping impact has not been well introduced to society nor appropriately regulated in international scale. Because of traffic density and the presence of sensitive marine species in some parts of the world, the negative social and environmental impacts of underwater noise pollution become more critical. Haro Strait due to high shipping traffic and presence of vulnerable marine species such as Southern Resident Killer Whale is a good example. The majority of ocean-going vessels transiting to Vancouver and vice versa pass through the corridor which includes Haro Strait. Tankers currently represent about 2% of total ship traffic visiting the Port of Vancouver; however, regarding the Trans Mountain Pipeline Expansion Project, the traffic density will grow by 11%, which will enhance the adverse impacts of underwater noise pollution on marine mammals. This study, by considering the features and characteristics of the area and the project, proposed four scenarios and modelling. The article by developing simulations and utilizing the Multiple Criteria Decision Making (Multiple Attribute Decision Making) algorithms and Technique for Order of Preference by Similarity to Ideal Solution techniques strives to trade-off between the environmental (noise and CO2 emission) and economical (fuel cost) aspects of the project to enhance the Decision Support System to promote sustainable development. This will help the decision makers to have a multi-dimensional thinking instead of the single-dimensional thinking in addressing and tackling the negative externalities of the Trans Mountain project in the area. Moreover, at the end of each scenario, a sensitivity analysis will be conducted to provide a clean environment for decision makers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.