IntroductionMesenchymal stem cells (MSCs) have therapeutic potential for the repair of myocardial injury. The efficacy of MSC therapy for myocardial regeneration mainly depends on the survival of cells after transplantation into the infarcted heart. In the transplanted regions, reactive oxygen species (ROS) can cause cell death, and this process depends on caspase activation and autophagosome formation.MethodsA Software TargetScan was utilized to search for microRNAs (miRNAs) that target caspase-3 mRNA. Six candidate miRNAs including let-7b were selected and transfected into human MSCs in vitro. Expression of MEK-EKR signal pathways and autophagy-related genes were detected. Using ischemia/reperfusion model (I/R), the effect of MSCs enriched with let-7b was determined after transplantation into infarcted heart area. Miller catheter was used to evaluate cardiac function.ResultsHere, we report that let-7b targets caspase-3 to regulate apoptosis and autophagy in MSCs exposed to ROS. Let-7b-transfected MSCs (let-7b-MSCs) showed high expression of survival-related proteins, including p-MEK, p-ERK and Bcl-2, leading to a decrease in Annexin V/PI- and TUNEL-positive cells under ROS-rich conditions. Moreover, autophagy-related genes, including Atg5, Atg7, Atg12 and beclin-1, were significantly downregulated in let-7b-MSCs. Using a rat model of acute myocardial infarction, we found that intramyocardial injection of let-7b-MSCs markedly enhanced left ventricular (LV) function and microvessel density, in accordance with a reduced infarct size and the expression of caspase-3.ConclusionsTaken together, these data indicate that let-7b may protect MSCs implanted into infarcted myocardium from apoptosis and autophagy by directly targeting caspase-3 signaling.
Dynamin-related protein-1 (Drp1) plays a critical role in mitochondrial fission which allows cell proliferation and Mdivi-1, a specific small molecule Drp1 inhibitor, is revealed to attenuate proliferation. However, few molecular mechanisms-related to Drp1 under stimulus for restenosis or atherosclerosis have been investigated in vascular smooth muscle cells (vSMCs). Therefore, we hypothesized that Drp1 inhibition can prevent vascular restenosis and investigated its regulatory mechanism. Angiotensin II (Ang II) or hydrogen peroxide (H2 O2 )-induced proliferation and migration in SMCs were attenuated by down-regulation of Drp1 Ser 616 phosphorylation, which was demonstrated by in vitro assays for migration and proliferation. Excessive amounts of ROS production and changes in mitochondrial membrane potential were prevented by Drp1 inhibition under Ang II and H2 O2 . Under the Ang II stimulation, activated Drp1 interacted with PKCδ and then activated MEK1/2-ERK1/2 signaling cascade and MMP2, but not MMP9. Furthermore, in ex vivo aortic ring assay, inhibition of the Drp1 had significant anti-proliferative and -migration effects for vSMCs. A formation of vascular neointima in response to a rat carotid artery balloon injury was prevented by Drp1 inhibition, which shows a beneficial effect of Drp1 regulation in the pathologic vascular condition. Drp1-mediated SMC proliferation and migration can be prevented by mitochondrial division inhibitor (Mdivi-1) in in vitro, ex vivo and in vivo, and these results suggest the possibility that Drp1 can be a new therapeutic target for restenosis or atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.