Abstract. Interleukin-I (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) ILl induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-la and !~ on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrlL-ls stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrlL-ls. Both IL-ls were observed to increase the steady-state levels of pro al(I) and pro a2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrlL-la and 13 stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrlL-la and 13 both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-ls to stimulate cell growth or production of collagen and collagenase. Each of the IL-ls stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrlL-113 was found to be less potent than hrlL-1 a in stimulating PGE2 production. These observations support the notion that IL-l~t and 13 may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-la and 13 might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.
Collagen molecules are major extracellular matrix proteins involved in the development and support of delicate auditory sensory organs. Type II collagen is widely distributed within inner ear tissues, while type IX is found only within the labyrinthine membrane and dense fibers of the tectorial membrane. Antibody specific for type II collagen has been shown to be elevated in some patients with hearing loss due to several presumably autoimmune illnesses (including Meniere's disease, otosclerosis, chronic progressive sensorineural hearing loss, and relapsing polychondritis). Purified human type II and LX collagens and an extract of human cochlear tissue were subjected to isolation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose. The sera of 21 patients with inner ear disease were examined for the presence of anticollagen and anticochlear antibodies; the sera were used to probe Western blots of purified human collagens U, LX, and XI, and cochlear protein extract with peroxidase-conjugated goat anti human polyvalent immunoglobulin as the second antibody. Anti-type II collagen antibodies were seen in 12 of 21 (57%) patients, while 13 of 21 (62%) had anti-type IX antibodies detectable by Western blot. A previously unreported 30 kd (probably noncollagen) protein was found by SDS-PAGE of human cochlear tissue extracts, with 3 patients, all with Meniere's disease, having antibody activity to this protein detected by Western blot. Anti-type II and anti-type LX antibodies were found in a high percentage of patients with Meniere's disease, otosclerosis, and strial atrophy. Six patients (29%), and all control patients, had no detectable antibodies to these proteins by our assay.
The major outer membrane protein of LegioneHla pneumophila exhibits an apparent molcular mass of 100 kDa. Previous studies revealed the oligomer to be composed of 28-and 31-kDa subunits; the latter subunit is covalently bound to peptidoglycan. These proteins exhibit cross-reactivity with polyclonal anti-31-kDa protein serum. In this study, we present evidence to confirm that the 31-kDa subunit is a 28-kDa subunit containing a bound fragment of peptidoglycan. Peptide maps of purified proteins were generated following cyanogen bromide cleavage or proteolysis with staphylococcal V8 protease. A comparison of the banding patterns resulting from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a common pattern. Selected peptide fragments were sequenced on a gas phase microsequencer, and the sequence was compared with the sequence obtained for the 28-kDa protein. While the amino terminus of the 31-kDa protein was blocked, peptide fragments generated by cyanogen bromide treatment exhibited a sequence identical to that of the amino terminus of the 28-kDa protein, but beginning at amino acid four (glycine), which is preceded by methionine at the third position. This sequence, (Gly-Thr-Met)-Gly-Pro-Val-Trp-ThrP Gly-Asn .... confirms that these proteins have a common amino terminus. An oligonucleotide synthesized from the codons of the common N-terminal amino acid sequence was used to establish by Southern and Northern (RNA) blot analyses that a single gene coded for both proteins. With regard to the putative porin stucture, we have identified two major bands at 70 kDa and at approximately 120 kDa by nonreducing SDS-PAGE. The former may represent the typical trimeric motif, while the latter may represent either a double trimer or an aggregate. Analysis of these two forms by two-dimensional SDS-PAGE (first dimension, nonreducing; second dimension, reducing) established that both were composed of 31-and 28-kDa subunits cross-linked via interchain disulfide bonds. These studies confirm that the novel L. pneumophila major outer membrane protein is covalently bound to peptidoglycan via a modified 28-kDa subunit (31-kDa anchor protein) and cross-linked to other 28-kDa subunits via interchain disulfide bonds.
Glycoprotein (GP) IIb-IIIa serves as the platelet fibrinogen receptor. Studies of the tertiary structure of GPIIIa have shown that the protein has a large loop structure of at least 325 amino acids in length. To further characterize this loop structure, intact platelets were digested with alpha-chymotrypsin. Digestion products were examined using the anti-GPIIIa monoclonal antibodies (MoAbs) AP3, D3GP3, and C5GP3, as well as the human alloantibody, anti-PLA1. AP3 recognized GPIIIa digestion products of 109, 95, and 68 Kd. D3GP3 and C5GP3 recognized an additional band of 51 Kd. Time course digestions demonstrated that the 51-Kd fragment was generated by proteolysis of the 68-Kd peptide. Sequence analysis of the reduced 51-Kd peptide showed that this fragment began at amino acid 422. The nonreduced 51-Kd peptide was reactive with antibodies directed against the first 13 amino acids of GPIIIa, demonstrating the presence of a covalently attached N-terminal peptide. These data suggest that: (1) the minimum length of the loop structure is at least 384 amino acids; (2) the AP3 epitope is formed at least in part by a determinant contained within residues 348 to 421; and (3) the D3GP3 and C5GP3 epitopes are contained within amino acids 422 to 692 of GPIIIa, a region that may be flexible and involved in conformational changes that occur after ligand binding.
Glycoprotein (GP) IIb-IIIa serves as the platelet fibrinogen receptor. Studies of the tertiary structure of GPIIIa have shown that the protein has a large loop structure of at least 325 amino acids in length. To further characterize this loop structure, intact platelets were digested with alpha-chymotrypsin. Digestion products were examined using the anti-GPIIIa monoclonal antibodies (MoAbs) AP3, D3GP3, and C5GP3, as well as the human alloantibody, anti-PLA1. AP3 recognized GPIIIa digestion products of 109, 95, and 68 Kd. D3GP3 and C5GP3 recognized an additional band of 51 Kd. Time course digestions demonstrated that the 51-Kd fragment was generated by proteolysis of the 68-Kd peptide. Sequence analysis of the reduced 51-Kd peptide showed that this fragment began at amino acid 422. The nonreduced 51-Kd peptide was reactive with antibodies directed against the first 13 amino acids of GPIIIa, demonstrating the presence of a covalently attached N-terminal peptide. These data suggest that: (1) the minimum length of the loop structure is at least 384 amino acids; (2) the AP3 epitope is formed at least in part by a determinant contained within residues 348 to 421; and (3) the D3GP3 and C5GP3 epitopes are contained within amino acids 422 to 692 of GPIIIa, a region that may be flexible and involved in conformational changes that occur after ligand binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.