Purpose As measuring flight performance by experimental methods requires a lot of effort and cost, theoretical models can bring new perspectives to aircraft design. This paper aims to propose a model on the direct calculation of wetted area and L/Dmax. Design/methodology/approach Model is based on idea that the wetted area is proportional to aircraft gross weight to the power of 2/3 (Wg2/3). Aerodynamic underpinning of this method is based on the square–cube law and the claim that parasitic drag is related to the Swet/Swing. The equation proposed by Raymer was used to find the L/Dmax estimate based on the calculated wetted area. The accuracy of the theoretical approach was measured by comparing the L/Dmax values found in the reference literature and the L/Dmax values predicted by the theoretical approach. Findings Proposed theoretical L/Dmax estimate matches with the actual L/Dmax data in different types of aircraft. Among the conventional tube-wing design, only the sailplanes have a very low Swet/Swing. The Swet/Swing of flying wings, blended wing bodies (BWBs) and large delta wings are lower than conventional tube-wing design. Lower relative wetted area (Swet/Swing) is the key design criterion in high L/Dmax targeted designs. Originality/value The proposed model could be used in wing sizing according to the targeted L/Dmax value in aircraft design. The approach can be used to estimate the effect of varying gross weight on L/Dmax. In addition, the model contributes to the L/Dmax estimation of unusual designs, such as variable-sweep wing, large delta wings, flying wings and BWBs. This study is valuable in that it reveals that L/Dmax value can be predicted only with aspect ratio, gross weight (Wg) and wing area (Swing) data.
Purpose Blended wing body (BWB) is a very advantageous design in terms of low fuel consumption, low emission and low noise levels. Because of these advantages, the BWB is a candidate to become the commercial passenger aircraft of the future by providing a paradigm shift in conventional designs. This paper aims to propose a key design parameter for wing sizing of subsonic BWB and a performance parameter for calculating the lift/drag ratio values of BWBs. Design/methodology/approach The parameter proposed in the study is based on the square/cube law, that is, the idea that the wetted area is proportional to the power of 2/3 of the weight. Data on the weight, wing area, wingspan, lift-to-drag (L/D) ratio for 19 BWB used in the analyzes were compiled from the published literature and a theoretical methodology was developed to estimate the maximum lift to drag ratio of BWBs. The accuracy of the proposed key design parameter was questioned by comparing the estimated L/Dmax values with the actual values. Findings In the current study, it is claimed that the wingspan/(take-off gross weight)(1/3) parameter provides an L/D efficiency coefficient regardless of aircraft size. The proposed key design parameter is useful both for small-scale BWB, that is unmanned aerial vehicles BWB and for large-scale BWB designs. Therefore, the b/Wg(1/3) parameter offers a dimensionless L/D efficiency coefficient for BWB designs of different scales. The wetted aspect ratio explains how low aspect ratio (AR)-BWB designs can compete with high AR-tube-and-wing designs. The key parameter is also useful for getting an idea of good or bad BWB with design and performance data published in the literature. As a result, reducing the blending area and designing a smaller central body are typical features of aerodynamically efficient BWB. Originality/value As the role of the square/cube law in the conceptual aircraft design stage has not been sufficiently studied in the literature, the application of this law to BWBs, a new generation of designs, makes the study original. Estimation of the wetted area ratio using only wingspan and gross weight data is an alternative and practical method for assessing the aerodynamic performance of the BWB. According to the model proposed in the current study, reducing the take-off gross weight of the BWBs using lighter building materials and designing with a larger wingspan (b) are the main recommendations for an aerodynamically efficient BWB.
Purpose Increasing endurance was a very appropriate subject for the biomimetic approach. The study aims to design and manufacture a long-lasting mini unmanned aerial vehicle (UAV) using active gliding and soaring. Design/methodology/approach The endurance of mini UAVs is limited by battery or fuel capacity, and it is not always possible to increase these energy sources due to the fuselage size. Long endurance aircraft are required in various areas such as silent environment and traffic monitoring or search and rescue. Literature research on bird flight performance conducted to determine design parameters. These parameters are used in the theoretical design of the UAV for optimization. Computational fluid dynamics simulation and flight tests of the UAV performed to figure out the success of the design. Findings For a mini UAV to be produced in this class, it has been observed that it is more accurate to examine birds instead of gliders due to the size similarity. The UAV design reaches a 27.5 L/D (Glide ratio) ratio in the theoretical approach. However, flight results approved max L/D ratio is around 25 at the sea level. This flight performance is enough to outperform in glide ratio of Wandering albatrosses. Practical implications Sailplanes are known as sport aircraft. However, recent projects focus on glider designs due to fuel efficiency and silent tracking. Stemme S-14 that carries a high-resolution camera is one of the examples of these projects. The unmanned glider design can lead to these implications in the UAVs at least during the stand-by period in the air. Thanks to low weight, UAVs do not require strong thermals, which allows flying almost all over the world. Originality/value Researchers generally focus on increasing the battery capacity or the performance of the UAV. However, this study’s concentration is to increase the flight duration of the UAV by using geographical currents. For this purpose, taking advantage of bird morphology is quite a new topic. Also, glider type designs are rarely found in the field.
Bu çalışmada saha ve arazi görevlerine yönelik, modüler ve yüksek faydalı yük oranlı mikro sınıfı elektrik motorlu bir insansız hava aracı tasarımı, üretimi ve testleri konu edinilmiştir. Söz konusu insansız hava aracının boş ağırlığı 600 gram olup, 1,4 kilogram faydalı yük taşıma kapasitesine sahiptir. Özgün tasarıma sahip ve mikro sınıfa dâhil olan insansız hava aracı; kanadı dört, kuyruğu iki ve gövdesi tek olmak üzere yedi alt parçaya ayrılıp küçük boyutlardaki özel kutusuna sığdırılabilmektedir. Yüksek modüler yapısı sayesinde üç dakika içerisinde montaj ve de montaj imkânı ile bir pist gerekmeksizin elden atılarak uçurulabilmesi insansız hava aracının öne çıkan diğer özellikleridir. Gövde üstü iniş ve diğer zorlu saha şartlarına direnebilen, darbe emici özelliğe sahip, ileri teknoloji üç boyutlu baskı yöntemi kullanılarak üretilen özgün tasarım bileşenler, hava aracı yapısının %70'ini oluşturmaktadır. Çalışmada tasarımı, üretimi ve uçuş performans testleri gerçekleştirilen İHA, Society of Automotive Engineers Aero Design West 2016 yarışmasında ülkemizi temsil eden tek Türk insansız hava aracı olmuştur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.