The social brain hypothesis proposes that large neocortex size evolved to support cognitively demanding social interactions. Accordingly, previous studies have observed that larger orbitofrontal and amygdala structures predict the size of an individual's social network. However, it remains uncertain how an individual's social connectedness reported by other people is associated with the social brain volume. In this study, we found that a greater in-degree network size, a measure of social ties identified by a subject's social connections rather than by the subject, significantly correlated with a larger regional volume of the orbitofrontal cortex, dorsomedial prefrontal cortex and lingual gyrus. By contrast, out-degree size, which is based on an individual's self-perceived connectedness, showed no associations. Meta-analytic reverse inference further revealed that regional volume pattern of in-degree size was specifically involved in social inference ability. These findings were possible because our dataset contained the social networks of an entire village, i.e. a global network. The results suggest that the in-degree aspect of social network size not only confirms the previously reported brain correlates of the social network but also shows an association in brain regions involved in the ability to infer other people's minds. This study provides insight into understanding how the social brain is uniquely associated with sociocentric measures derived from a global network.
While the aging process is a universal phenomenon, people perceive and experience one’s aging considerably differently. Subjective age (SA), referring to how individuals experience themselves as younger or older than their actual age, has been highlighted as an important predictor of late-life health outcomes. However, it is unclear whether and how SA is associated with the neurobiological process of aging. In this study, 68 healthy older adults underwent a SA survey and magnetic resonance imaging (MRI) scans. T1-weighted brain images of open-access datasets were utilized to construct a model for age prediction. We utilized both voxel-based morphometry (VBM) and age-prediction modeling techniques to explore whether the three groups of SA (i.e., feels younger, same, or older than actual age) differed in their regional gray matter (GM) volumes, and predicted brain age. The results showed that elderly individuals who perceived themselves as younger than their real age showed not only larger GM volume in the inferior frontal gyrus and the superior temporal gyrus, but also younger predicted brain age. Our findings suggest that subjective experience of aging is closely related to the process of brain aging and underscores the neurobiological mechanisms of SA as an important marker of late-life neurocognitive health.
People often have the intuition that they are similar to their friends, yet evidence for homophily (being friends with similar others) based on self-reported personality is inconsistent. Functional connectomes—patterns of spontaneous synchronization across the brain—are stable within individuals and predict how people tend to think and behave. Thus, they may capture interindividual variability in latent traits that are particularly similar among friends but that might elude self-report. Here, we examined interpersonal similarity in functional connectivity at rest—that is, in the absence of external stimuli—and tested if functional connectome similarity is associated with proximity in a real-world social network. The social network of a remote village was reconstructed; a subset of residents underwent functional magnetic resonance imaging. Similarity in functional connectomes was positively related to social network proximity, particularly in the default mode network. Controlling for similarities in demographic and personality data (the Big Five personality traits) yielded similar results. Thus, functional connectomes may capture latent interpersonal similarities between friends that are not fully captured by commonly used demographic or personality measures. The localization of these results suggests how friends may be particularly similar to one another. Additionally, geographic proximity moderated the relationship between neural similarity and social network proximity, suggesting that such associations are particularly strong among people who live particularly close to one another. These findings suggest that social connectivity is reflected in signatures of brain functional connectivity, consistent with the common intuition that friends share similarities that go beyond, for example, demographic similarities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.