The degradation of methyl tert-butyl ether (MTBE) was investigated in the aqueous solution of coated ZnO onto magnetite nanoparticale based on an advanced photocatalytic oxidation process. The photocatalysts were synthesized by coating of ZnO onto magnetite using precipitation method. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibration sample magnetometer (VSM). Besides, specific surface area was also determined by BET method. The four effective factors including pH of the reaction mixture, Fe3O4/ZnO magnetic nanoparticles concentration, initial MTBE concentration and molar ratio of [H2O2]/ [MTBE] were optimized using response surface modeling (RSM). Using the four-factor-three-level Box–Behnken design, 29 runs were designed considering the effective ranges of the influential factors. The optimized values for the operational parameters under the respective constraints were obtained at PH of 7.2, Fe3O4/ZnO concentration of 1.78 g/L, initial MTBE concentration of 89.14 mg/L and [H2O2]/ [MTBE] molar ratio of 2.33. Moreover, kinetics of MTBE degradation was determined under optimum condition. The study about core/shell magnetic nanoparticles (MNPs) recycling were also carried out and after about four times, the percentage of the photocatalytic degradation was about 70%.
The dry end of the soil water retention curve (WRC) plays an important role in various hydrologic, solute transport, plant, and microbial processes. Despite increasing application of biochar as a soil amendment, knowledge about water retention in biochars and biochar-amended soils under dry conditions is lacking. Mechanistic models are presented to predict the WRC for biochars and biochar-amended soils at matric potential (ψ) <~−1 MPa. For biochars, the amount of water retained is linked to biochar surficial oxygen content and pore volume and surface area distributions. The WRC for soils at dry conditions is predicted using specific surface area. The WRC model for biochar-amended soils is the sum of the contributions of models for biochar and soil. The model's utility was examined for three natural soils and a uniform sand, a wood-based biochar, and 10 different combinations of these soils and biochar. The accuracy of the model for biochars was further tested for six other pyrogenic carbonaceous materials (PCMs). The models agreed well with experimental data: for the biochar and PCMs, soils, and biochar-amended soils, the root mean square error normalized to the range of water content was almost always <10%. The line of best fit for predicted versus measured gravimetric water content at permanent wilting point had slope of 0.935 ± 0.013 and a coefficient of determination of 0.997. The applicability of these models for different biochars, soils, and their mixtures is discussed.
In this study, the performance of an aerobic moving bed biofilm reactor (MBBR) was assessed for the removal of phenol as the sole substrate from saline wastewater. The effect of several parameters namely inlet phenol concentration (200–1200 mg/L), hydraulic retention time (8–24 h), inlet salt content (10–70 g/L), phenol shock loading, hydraulic shock loading and salt shock loading on the performance of the 10 L MBBR inoculated with a mixed culture of active biomass gradually acclimated to phenol and salt were evaluated in terms of phenol and chemical oxygen demand (COD) removal efficiencies. The results indicated that phenol and COD removal efficiencies are affected by HRT, phenol and salt concentration in the bioreactor saline feed. The MBBR could remove up to 99% of phenol and COD from the feed saline wastewater at inlet phenol concentrations up to 800 mg/L, HRT of 18 h and inlet salt contents up to 40 g/L. The reactor could also resist strong shock loads. Furthermore, measuring biological quantitative parameters indicated that the biofilm plays a main role in phenol removal. Overall, the results of this investigation revealed that the developed MBBR system with high concentration of the active mixed biomass can play a prominent role in order to treat saline wastewaters containing phenol in industrial applications as a very efficient and flexible technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.